David Martínez-Rubio bio photo

David Martínez-Rubio

  G. Scholar LinkedIn Github e-Mail CV

My Publications

You can also find all my publications on Google Scholar.

Preprints

★ means equal contribution, sometimes in arbitrary order

  1. Implicit Riemannian Optimism with Applications to Min-Max Problems
    C. Roux★, D. Martínez-Rubio★, S. Pokutta (2025)
    [PDF] [BibTeX]

    @article{roux2025implicit,
      title={Implicit Riemannian Optimism with Applications to Min-Max Problems},
      author={Roux, Christophe and Mart{\'\i}nez-Rubio, David and Pokutta, Sebastian},
      journal={arXiv preprint arXiv:2501.18381},
      url={https://arxiv.org/abs/2501.18381},
      year={2025}
    }
    
  2. Beyond Short Steps in Frank-Wolfe Algorithms
    D. Martínez-Rubio★, S. Pokutta★ (2025)
    [PDF] [BibTeX]

    @article{martinezrubio2025beyond,
      title={Beyond Short Steps in Frank-Wolfe Algorithms},
      author={Mart{\'\i}nez-Rubio, David and Pokutta, Sebastian},
      journal={arXiv preprint arXiv:2501.18773},
      url={https://arxiv.org/abs/2501.18773},
      year={2025}
    }
    
  3. Secant Line Search for Frank-Wolfe Algorithms
    D. Hendrych, M. Besançon, D. Martínez-Rubio, S. Pokutta (2025)
    [PDF] [BibTeX]

    @article{hendrych2025secant,
      title={Secant Line Search for Frank-Wolfe Algorithms},
      author={Hendrych, Deborah and Besançon, Mathieu and Mart{\'\i}nez-Rubio, David and Pokutta, Sebastian},
      journal={arXiv preprint arXiv:2501.18775},
      url={https://arxiv.org/abs/2501.18775},
      year={2025}
    }
    
  4. Non-Euclidean High-Order Smooth Convex Optimization
    J.P. Contreras★, C. Guzmán★, D. Martínez-Rubio★ (2024)
    [PDF] [BibTeX]

    @article{contreras2024noneuclidean,
      title={Non-Euclidean High-Order Smooth Convex Optimization},
      author={Contreras, Juan Pablo and Guzmán, Cristóbal and Mart{\'\i}nez-Rubio, David},
      journal={arXiv preprint arXiv:2411.08987},
      url={https://arxiv.org/abs/2411.08987},
      year={2024}
    }
    
  5. Strong Convexity of Sets in Riemannian Manifolds
    D. Scieur★, D. Martínez-Rubio★, T. Kerdreux★, A. d'Aspremont, S. Pokutta (2023)
    [PDF] [BibTeX]

    @article{scieur2023strong,
      title={Strong Convexity of Sets in Riemannian Manifolds},
      author={Scieur, Damien and Kerdreux, Thomas  and Mart{\'\i}nez-Rubio, David and d'Aspremont, Alexandre and Pokutta, Sebastian},
      journal={arXiv preprint arXiv:2312.03583},
      url={https://arxiv.org/abs/2312.03583},
      year={2023}
    }
    

Conference Proceedings

  1. Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties
    D. Martínez-Rubio★, C. Roux★, C. Criscitiello, S. Pokutta (2023)
    AISTATS 2025, 28th International Conference on Artificial Intelligence and Statistics
    [PDF] [BibTeX]

    @article{martinez2023accelerated,
      title={Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties},
      author={Mart{\'\i}nez-Rubio, David and Roux, Christophe and Criscitiello, Christopher and Pokutta, Sebastian},
      journal={arXiv preprint arXiv:2305.16186},
      url={https://arxiv.org/abs/2305.16186},
      year={2023}
    }
    
  2. Black-Box Uniform Stability for Non-Euclidean Empirical Risk Minimization
    S. Vary, D. Martínez-Rubio, Patrick Rebeschini (2024)
    AISTATS 2025, 28th International Conference on Artificial Intelligence and Statistics
    [PDF] [BibTeX]

    @article{vary2024blackbox,
      title={Black-Box Uniform Stability for Non-Euclidean Empirical Risk Minimization},
      author={Vary, Simon and Mart{\'\i}nez-Rubio, David and Rebeschini, Patrick},
      journal={arXiv preprint arXiv:2412.15956},
      url={https://arxiv.org/abs/2412.15956},
      year={2024}
    }
    
  3. Convergence and Trade-Offs in Riemannian Gradient Descent and Riemannian Proximal Point
    D. Martínez-Rubio★, C. Roux★, S. Pokutta
    ICML 2024, 41th International Conference on Machine Learning
    [PDF] [BibTeX]

    @inproceedings{martinez2024convergence,
      author       = {David Mart{\'{\i}}nez{-}Rubio and
                      Christophe Roux and
                      Sebastian Pokutta},
      title     = {Convergence and Trade-Offs in Riemannian Gradient Descent and Riemannian
                      Proximal Point},
      booktitle = {Proceedings of the 41st International Conference on Machine Learning, {ICML} 2024
                      Vienna, Austria, July 21-27},
      series    = {Proceedings of Machine Learning Research},
      volume    = {235},
      pages     = {34920-34948},
      publisher = { {PMLR} },
      year      = {2024},
      url       = {https://arxiv.org/abs/2403.10429},
    }
    
  4. Accelerated and Sparse Algorithms for Approximate Personalized PageRank and Beyond
    D. Martínez-Rubio★, E. Wirth★, and S. Pokutta
    COLT 2023, 36th Annual Conference on Learning Theory
    [PDF] [Slides] [BibTeX]

    @inproceedings{martinezrubio2023pagerank,
      author       = {David Mart{\'{\i}}nez{-}Rubio and
                      Elias Samuel Wirth and
                      Sebastian Pokutta},
      editor       = {Gergely Neu and
                      Lorenzo Rosasco},
      title        = {Accelerated and Sparse Algorithms for Approximate Personalized PageRank
                      and Beyond},
      booktitle    = {The Thirty Sixth Annual Conference on Learning Theory, {COLT} 2023,
                      12-15 July 2023, Bangalore, India},
      series       = {Proceedings of Machine Learning Research},
      volume       = {195},
      pages        = {2852--2876},
      publisher    = { {PMLR} },
      year         = {2023},
      url          = {https://arxiv.org/abs/2303.12875},
    }
    
  5. Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties
    D. Martínez-Rubio, and S. Pokutta
    COLT 2023, 36th Annual Conference on Learning Theory
    [PDF] [Slides] [BibTeX]

    @inproceedings{martinezRubio2022accelerated,
      author       = {David Mart{\'{\i}}nez{-}Rubio and
                      Sebastian Pokutta},
      editor       = {Gergely Neu and
                      Lorenzo Rosasco},
      title        = {Accelerated Riemannian Optimization: Handling Constraints with a Prox
                      to Bound Geometric Penalties},
      booktitle    = {The Thirty Sixth Annual Conference on Learning Theory, {COLT} 2023,
                      12-15 July 2023, Bangalore, India},
      series       = {Proceedings of Machine Learning Research},
      volume       = {195},
      pages        = {359--393},
      publisher    = { {PMLR} },
      year         = {2023},
      url          = {https://arxiv.org/abs/2211.14645},
    }
    
  6. Fast Algorithms for Packing Proportional Fairness and its Dual
    F. Criado★, D. Martínez-Rubio★, S. Pokutta
    NeurIPS 2022, 35th Advances in Neural Information Processing Systems
    [PDF] [Slides] [BibTeX]

    @inproceedings{criado2022fast,
      title={Fast algorithms for packing proportional fairness and its dual},
      author={Criado, Francisco and Mart{\'i}nez-Rubio, David and Pokutta, Sebastian},
      booktitle    = {Advances in Neural Information Processing Systems 35: Annual Conference
                      on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,
                      LA, USA, November 28 - December 9, 2022},
      volume={35},
      pages={25754--25766},
      url={https://arxiv.org/abs/2109.03678},
      year={2022}
    }
    
  7. Global Riemannian Acceleration in Hyperbolic and Spherical Spaces
    D. Martínez-Rubio
    ALT 2022, 33rd International Conference on Algorithmic Learning Theory
    [PDF] [Slides] [BibTeX]

    @inproceedings{martinezRubio2020global,
      author    = {David Mart{\'{i}}nez{-}Rubio},
      editor    = {Sanjoy Dasgupta and
                   Nika Haghtalab},
      title     = {Global Riemannian Acceleration in Hyperbolic and Spherical Spaces},
      booktitle = {International Conference on Algorithmic Learning Theory, 29-1 April
                   2022, Paris, France},
      series    = {Proceedings of Machine Learning Research},
      volume    = {167},
      pages     = {768--826},
      publisher = { {PMLR} },
      year      = {2022},
      url       = {https://proceedings.mlr.press/v167/martinez-rubio22a.html},
    }
    
    
    
  8. Decentralized Cooperative Stochastic Bandits
    D. Martínez-Rubio, V. Kanade, and P. Rebeschini
    NeurIPS 2019, 32nd Advances in Neural Information Processing Systems
    [PDF] [Slides] [BibTeX] [Code]

    @inproceedings{martinezRubio2018decentralized,
      author    = {David Mart{\'{i}}nez{-}Rubio and
                   Varun Kanade and
                   Patrick Rebeschini},
      editor    = {Hanna M. Wallach and
                   Hugo Larochelle and
                   Alina Beygelzimer and
                   Florence d'Alch{\'{e}}{-}Buc and
                   Emily B. Fox and
                   Roman Garnett},
      title     = {Decentralized Cooperative Stochastic Bandits},
      booktitle = {Advances in Neural Information Processing Systems 32: Annual Conference
                   on Neural Information Processing Systems 2019, NeurIPS 2019, December
                   8-14, 2019, Vancouver, BC, Canada},
      pages     = {4531--4542},
      year      = {2019},
      url       = {https://proceedings.neurips.cc/paper/2019/hash/85353d3b2f39b9c9b5ee3576578c04b7-Abstract.html},
    }
    
  9. Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
    M. Lezcano-Casado★, and D. Martínez-Rubio★
    ICML 2019, 36th International Conference on Machine Learning
    [PDF] [Slides] [BibTeX]

    @inproceedings{DBLP:conf/icml/CasadoM19,
      author    = {Mario Lezcano Casado and
                   David Mart{\'{i}}nez{-}Rubio},
      editor    = {Kamalika Chaudhuri and
                   Ruslan Salakhutdinov},
      title     = {Cheap Orthogonal Constraints in Neural Networks: {A} Simple Parametrization
                   of the Orthogonal and Unitary Group},
      booktitle = {Proceedings of the 36th International Conference on Machine Learning,
                   {ICML} 2019, 9-15 June 2019, Long Beach, California, {USA}},
      series    = {Proceedings of Machine Learning Research},
      volume    = {97},
      pages     = {3794--3803},
      publisher = { {PMLR} },
      year      = {2019},
      url       = {http://proceedings.mlr.press/v97/lezcano-casado19a.html},
    }
    
  10. Online Learning Rate Adaptation with Hypergradient Descent
    A. G. Baydin, R. Cornish, D. Martínez-Rubio, M. Schmidt, and F. Wood
    ICLR 2018, 6th International Conference on Learning Representations
    [PDF] [BibTeX]

    @inproceedings{DBLP:conf/iclr/BaydinCMSW18,
      author    = {Atilim Gunes Baydin and
                   Robert Cornish and
                   David Mart{\'{i}}nez{-}Rubio and
                   Mark Schmidt and
                   Frank Wood},
      title     = {Online Learning Rate Adaptation with Hypergradient Descent},
      booktitle = {6th International Conference on Learning Representations, {ICLR} 2018,
                   Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings},
      publisher = {OpenReview.net},
      year      = {2018},
      url       = {https://openreview.net/forum?id=BkrsAzWAb},
    }
    

Workshop Publications and Technical Reports

  • Open Problem: Polynomial linearly-convergent method for g-convex optimization?
    C. Criscitiello★, D. Martínez-Rubio★, and N. Boumal★
    COLT 2023, 36th Annual Conference on Learning Theory
    [PDF] [BibTeX]

    @inproceedings{criscitiello2023polynomial,
      author       = {Christopher Criscitiello and
                      David Mart{\'{\i}}nez{-}Rubio and
                      Nicolas Boumal},
      editor       = {Gergely Neu and
                      Lorenzo Rosasco},
      title        = {Open Problem: Polynomial linearly-convergent method for g-convex optimization?},
      booktitle    = {The Thirty Sixth Annual Conference on Learning Theory, {COLT} 2023,
                      12-15 July 2023, Bangalore, India},
      series       = {Proceedings of Machine Learning Research},
      volume       = {195},
      pages        = {5950--5956},
      publisher    = { {PMLR} },
      year         = {2023},
      url          = {https://proceedings.mlr.press/v195/criscitiello23b.html},
    }
    
  • Neural Networks are a priori Biased Towards Boolean Functions with Low Entropy
    C. Mingard, J. Skalse, G. Valle-Pérez, D. Martínez-Rubio, V. Mikulik, and A. A. Louis (2019)
    [PDF] [BibTeX]

    @article{mingard2019neural,
      title={Neural networks are a priori biased towards Boolean functions with low entropy},
      author={Mingard, Chris and Skalse, Joar and Valle-P{\'e}rez, Guillermo and Mart{\'i}nez-Rubio, David and Mikulik, Vladimir and Louis, Ard A},
      journal={arXiv preprint arXiv:1909.11522},
      url={http://arxiv.org/pdf/1909.11522.pdf},
      year={2019}
    }
    
  • Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators
    M. Lezcano-Casado, A.G. Baydin, D. Martínez-Rubio, T.A. Le, F. Wood, L. Heinrich, G. Louppe, K. Cranmer, K. Ng, W. Bhimji and Prabhat
    The Workshop on Deep Learning for Physical Sciences, NIPS 2017
    [PDF] [BibTeX]

    @article{DBLP:journals/corr/abs-1712-07901,
      author    = {Mario Lezcano Casado and
                   Atilim Gunes Baydin and
                   David Mart{\'{i}}nez{-}Rubio and
                   Tuan Anh Le and
                   Frank D. Wood and
                   Lukas Heinrich and
                   Gilles Louppe and
                   Kyle Cranmer and
                   Karen Ng and
                   Wahid Bhimji and
                   Prabhat},
      title     = {Improvements to Inference Compilation for Probabilistic Programming
                   in Large-Scale Scientific Simulators},
      journal   = {CoRR},
      volume    = {abs/1712.07901},
      year      = {2017},
      url       = {http://arxiv.org/pdf/1712.07901.pdf},
      archivePrefix = {arXiv},
      eprint    = {1712.07901},
    }
    
    

Theses

  • PhD Thesis
    Acceleration in First-Order Optimization Methods: Promenading Beyond Convexity or Smoothness, and Applications
    University of Oxford, 2021
    [PDF] [BibTeX]

     
    @article{martinezrubio2021acceleration,
      title={Acceleration in First-Order Optimization Methods: Promenading Beyond Convexity or Smoothness, and Applications},
      author={Mart{\'i}nez-Rubio, David},
      journal={University of Oxford, Oxford, PhD thesis},
      url={https://damaru2.github.io/phd_thesis/thesis.pdf},
      year={2021}
    }
  • MSc Thesis
    Convergence Analysis of an Adaptive Method of Gradient Descent
    University of Oxford, 2017
    [PDF] [BibTeX]

    @article{martinezrubio2017convergence,
      title={Convergence analysis of an adaptive method of gradient descent},
      author={Mart{\'i}nez-Rubio, David},
      journal={University of Oxford, Oxford, M. Sc. thesis},
      url={https://damaru2.github.io/convergence_analysis_hypergradient_descent/dissertation_hypergradients.pdf},
      year={2017}
    }
  • BSc Thesis
    Characterization and computation of the Galois group of polynomials of degree 7
    Complutense University of Madrid, 2016
    [PDF] [BibTeX]

    @article{martinezrubio2016characterization,
      title={Characterization and computation of the Galois group of polynomials of degree 7},
      author={Mart{\'i}nez-Rubio, David},
      journal={Complutense University of Madrid, Madrid, B.Sc. Thesis},
      url={https://damaru2.github.io/assets/TFG.pdf},
      year={2016}
      }