My Publications
You can also find all my publications on Google Scholar.
Conference Publications
★ means equal contribution
Convergence and Trade-Offs in Riemannian Gradient Descent and Riemannian Proximal Point
D. Martínez-Rubio★, C. Roux★, S. Pokutta
ICML 2024, 41th International Conference on Machine Learning
[PDF] [BibTeX]@article{martinezrubio2023convergence, title={Convergence and Trade-Offs in Riemannian Gradient Descent and Riemannian Proximal Point}, author={Mart{\'\i}nez-Rubio, David and Roux, Christophe and Pokutta, Sebastian}, journal={arXiv preprint arXiv:2403.10429}, url={https://arxiv.org/abs/2403.10429}, year={2024} }
Accelerated and Sparse Algorithms for Approximate Personalized PageRank and Beyond
D. Martínez-Rubio★, E. Wirth★, and S. Pokutta
COLT 2023, 36th Annual Conference on Learning Theory
[PDF] [Slides] [BibTeX]@article{martinezrubio2023pagerank, title={Accelerated and Sparse Algorithms for Approximate Personalized PageRank and Beyond}, author={Mart{\'i}nez-Rubio, David and Wirth, Elias and Pokutta, Sebastian}, booktitle = {\textbf{COLT 2023}, Conference on Learning Theory 12-15 July 2023, {Bangalore}, {India}}, year={2023} }
Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties
D. Martínez-Rubio, and S. Pokutta
COLT 2023, 36th Annual Conference on Learning Theory
[PDF] [Slides] [BibTeX]@article{martinezRubio2022accelerated, title={Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties}, author={Mart{\'i}nez-Rubio, David and Pokutta, Sebastian}, booktitle = {\textbf{COLT 2023}, Conference on Learning Theory 12-15 July 2023, {Bangalore}, {India}}, journal={arXiv preprint arXiv:2211.14645}, year={2022} }
Fast Algorithms for Packing Proportional Fairness and its Dual
F. Criado★, D. Martínez-Rubio★, S. Pokutta
NeurIPS 2022, 35th Advances in Neural Information Processing Systems
[PDF] [Slides] [BibTeX]@article{criado2022fast, title={Fast algorithms for packing proportional fairness and its dual}, author={Criado, Francisco and Mart{\'i}nez-Rubio, David and Pokutta, Sebastian}, journal={Advances in Neural Information Processing Systems}, volume={35}, pages={25754--25766}, url={https://arxiv.org/abs/2109.03678}, year={2022} }
Global Riemannian Acceleration in Hyperbolic and Spherical Spaces
D. Martínez-Rubio
ALT 2022, 33rd International Conference on Algorithmic Learning Theory
[PDF] [Slides] [BibTeX]@inproceedings{martinezRubio2020global, author = {David Mart{\'{i}}nez{-}Rubio}, editor = {Sanjoy Dasgupta and Nika Haghtalab}, title = {Global Riemannian Acceleration in Hyperbolic and Spherical Spaces}, booktitle = {International Conference on Algorithmic Learning Theory, 29-1 April 2022, Paris, France}, series = {Proceedings of Machine Learning Research}, volume = {167}, pages = {768--826}, publisher = , year = {2022}, url = {https://proceedings.mlr.press/v167/martinez-rubio22a.html}, }
Decentralized Cooperative Stochastic Bandits
D. Martínez-Rubio, V. Kanade, and P. Rebeschini
NeurIPS 2019, 32nd Advances in Neural Information Processing Systems
[PDF] [Slides] [BibTeX] [Code]@inproceedings{martinezRubio2018decentralized, author = {David Mart{\'{i}}nez{-}Rubio and Varun Kanade and Patrick Rebeschini}, editor = {Hanna M. Wallach and Hugo Larochelle and Alina Beygelzimer and Florence d'Alch{\'{e}}{-}Buc and Emily B. Fox and Roman Garnett}, title = {Decentralized Cooperative Stochastic Bandits}, booktitle = {Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada}, pages = {4531--4542}, year = {2019}, url = {https://proceedings.neurips.cc/paper/2019/hash/85353d3b2f39b9c9b5ee3576578c04b7-Abstract.html}, }
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
M. Lezcano-Casado★, and D. Martínez-Rubio★
ICML 2019, 36th International Conference on Machine Learning
[PDF] [Slides] [BibTeX]@inproceedings{DBLP:conf/icml/CasadoM19, author = {Mario Lezcano Casado and David Mart{\'{i}}nez{-}Rubio}, editor = {Kamalika Chaudhuri and Ruslan Salakhutdinov}, title = {Cheap Orthogonal Constraints in Neural Networks: {A} Simple Parametrization of the Orthogonal and Unitary Group}, booktitle = {Proceedings of the 36th International Conference on Machine Learning, {ICML} 2019, 9-15 June 2019, Long Beach, California, {USA}}, series = {Proceedings of Machine Learning Research}, volume = {97}, pages = {3794--3803}, publisher = , year = {2019}, url = {http://proceedings.mlr.press/v97/lezcano-casado19a.html}, }
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin, R. Cornish, D. Martínez-Rubio, M. Schmidt, and F. Wood
ICLR 2018, 6th International Conference on Learning Representations
[PDF] [BibTeX]@inproceedings{DBLP:conf/iclr/BaydinCMSW18, author = {Atilim Gunes Baydin and Robert Cornish and David Mart{\'{i}}nez{-}Rubio and Mark Schmidt and Frank Wood}, title = {Online Learning Rate Adaptation with Hypergradient Descent}, booktitle = {6th International Conference on Learning Representations, {ICLR} 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings}, publisher = {OpenReview.net}, year = {2018}, url = {https://openreview.net/forum?id=BkrsAzWAb}, }
Preprints
Non-Euclidean High-Order Smooth Convex Optimization
J.P. Contreras★, C. Guzmán★, D. Martínez-Rubio★ (2024)
[PDF] [BibTeX]@article{contreras2024noneuclidean, title={Non-Euclidean High-Order Smooth Convex Optimization}, author={Contreras, Juan Pablo and Guzmán, Cristóbal and Mart{\'\i}nez-Rubio, David}, journal={arXiv preprint arXiv:2411.08987}, url={https://arxiv.org/abs/2411.08987}, year={2024} }
Strong Convexity of Sets in Riemannian Manifolds
D. Scieur★, T. Kerdreux★, D. Martínez-Rubio★, A. d'Aspremont, S. Pokutta (2023)
[PDF] [BibTeX]@article{scieur2023strong, title={Strong Convexity of Sets in Riemannian Manifolds}, author={Scieur, Damien and Kerdreux, Thomas and Mart{\'\i}nez-Rubio, David and d'Aspremont, Alexandre and Pokutta, Sebastian}, journal={arXiv preprint arXiv:2312.03583}, url={https://arxiv.org/abs/2312.03583}, year={2023} }
Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties
D. Martínez-Rubio★, C. Roux★, C. Criscitiello, S. Pokutta (2023)
[PDF] [BibTeX]@article{martinez2023accelerated, title={Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties}, author={Mart{\'\i}nez-Rubio, David and Roux, Christophe and Criscitiello, Christopher and Pokutta, Sebastian}, journal={arXiv preprint arXiv:2305.16186}, url={https://arxiv.org/abs/2305.16186}, year={2023} }
Neural Networks are a priori Biased Towards Boolean Functions with Low Entropy
C. Mingard, J. Skalse, G. Valle-Pérez, D. Martínez-Rubio, V. Mikulik, and A. A. Louis (2019)
[PDF] [BibTeX]@article{mingard2019neural, title={Neural networks are a priori biased towards Boolean functions with low entropy}, author={Mingard, Chris and Skalse, Joar and Valle-P{\'e}rez, Guillermo and Mart{\'i}nez-Rubio, David and Mikulik, Vladimir and Louis, Ard A}, journal={arXiv preprint arXiv:1909.11522}, url={http://arxiv.org/pdf/1909.11522.pdf}, year={2019} }
Workshop Publications and Technical Reports
Open Problem: Polynomial linearly-convergent method for g-convex optimization?
C. Criscitiello★, D. Martínez-Rubio★, and N. Boumal★
COLT 2023, 36th Annual Conference on Learning Theory
[PDF] [BibTeX]@inproceedings{criscitiello2023polynomial, author = {Christopher Criscitiello and David Mart{\'{\i}}nez{-}Rubio and Nicolas Boumal}, editor = {Gergely Neu and Lorenzo Rosasco}, title = {Open Problem: Polynomial linearly-convergent method for g-convex optimization?}, booktitle = {The Thirty Sixth Annual Conference on Learning Theory, {COLT} 2023, 12-15 July 2023, Bangalore, India}, series = {Proceedings of Machine Learning Research}, volume = {195}, pages = {5950--5956}, publisher = , year = {2023}, url = {https://proceedings.mlr.press/v195/criscitiello23b.html}, }
Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators
M. Lezcano-Casado, A.G. Baydin, D. Martínez-Rubio, T.A. Le, F. Wood, L. Heinrich, G. Louppe, K. Cranmer, K. Ng, W. Bhimji and Prabhat
The Workshop on Deep Learning for Physical Sciences, NIPS 2017
[PDF] [BibTeX]@article{DBLP:journals/corr/abs-1712-07901, author = {Mario Lezcano Casado and Atilim Gunes Baydin and David Mart{\'{i}}nez{-}Rubio and Tuan Anh Le and Frank D. Wood and Lukas Heinrich and Gilles Louppe and Kyle Cranmer and Karen Ng and Wahid Bhimji and Prabhat}, title = {Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators}, journal = {CoRR}, volume = {abs/1712.07901}, year = {2017}, url = {http://arxiv.org/pdf/1712.07901.pdf}, archivePrefix = {arXiv}, eprint = {1712.07901}, }
Theses
PhD Thesis
Acceleration in First-Order Optimization Methods: Promenading Beyond Convexity or Smoothness, and Applications
University of Oxford, 2021
[PDF] [BibTeX]@article{martinezrubio2021acceleration, title={Acceleration in First-Order Optimization Methods: Promenading Beyond Convexity or Smoothness, and Applications}, author={Mart{\'i}nez-Rubio, David}, journal={University of Oxford, Oxford, PhD thesis}, url={https://damaru2.github.io/phd_thesis/thesis.pdf}, year={2021} }
MSc Thesis
Convergence Analysis of an Adaptive Method of Gradient Descent
University of Oxford, 2017
[PDF] [BibTeX]@article{martinezrubio2017convergence, title={Convergence analysis of an adaptive method of gradient descent}, author={Mart{\'i}nez-Rubio, David}, journal={University of Oxford, Oxford, M. Sc. thesis}, url={https://damaru2.github.io/convergence_analysis_hypergradient_descent/dissertation_hypergradients.pdf}, year={2017} }
BSc Thesis
Characterization and computation of the Galois group of polynomials of degree 7
Complutense University of Madrid, 2016
[PDF] [BibTeX]@article{martinezrubio2016characterization, title={Characterization and computation of the Galois group of polynomials of degree 7}, author={Mart{\'i}nez-Rubio, David}, journal={Complutense University of Madrid, Madrid, B.Sc. Thesis}, url={https://damaru2.github.io/assets/TFG.pdf}, year={2016} }