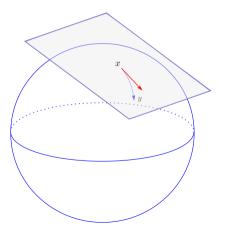
Riemannian Accelerated Optimization: Handling Constraints to Bound Geometric Penalties

David Martínez-Rubio, Sebastian Pokutta


Technische Universität Berlin, Zuse Institute Berlin

Riemannian Optimization

For a Riemannian manifold \mathcal{M} :

 $\min_{x\in\mathcal{M}}f(x).$

- Spheres, hyperbolic spaces.
- SPD matrices.

...

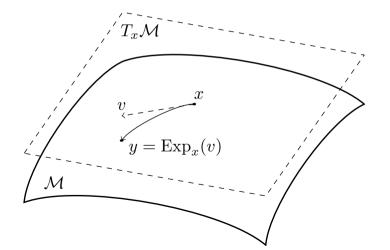
- ► SO(n) (real orthogonal matrices with det(A) = 1).
- Stiefel manifold V_k(Rⁿ) (ordered orthonormal basis of a k-dim vector space).

Riemannian Optimization

For a Riemannian manifold \mathcal{M} :

 $\min_{x\in\mathcal{M}}f(x).$

• Constrained \rightarrow unconstrained.


A function can be non-convex in the Euclidean case but geodesically convex on a manifold with the right metric → Fast algorithms.

Riemannian Optimization - Applications

- Principal Components Analysis (Jolliffe et al., 2003; Genicot et al., 2015; Huang and Wei, 2019).
- Low-rank matrix completion (Cambier and Absil, 2016; Heidel and Schulz, 2018; Mishra and Sepulchre, 2014; Tan et al., 2014; Vandereycken, 2013).
- **Dictionary learning** (Cherian and Sra, 2017; Sun et al., 2017).
- Optimization under orthogonality constraints (Edelman et al., 1998)
- **Robust covariance estimation in Gaussian distributions** (Wiesel, 2012).
- **Gaussian mixture models** (Hosseini and Sra, 2015).
- Operator scaling (Allen-Zhu et al., 2018).
- Wasserstein Barycenters (Hosseini and Sra, 2020)
- Many more...

Geodesic Convexity

Notation: Let \mathcal{M} be a Riemannian manifold. Given $x, y \in \mathcal{M}$ and $w \in T_x \mathcal{M}$ we use $\langle w, y - x \rangle \stackrel{\text{def}}{=} -\langle w, x - y \rangle \stackrel{\text{def}}{=} \langle w, \operatorname{Exp}_x^{-1}(y) \rangle_x$.

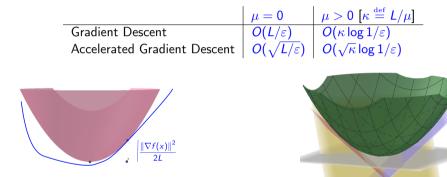
Geodesic Convexity

Notation: Let \mathcal{M} be a Riemannian manifold. Given $x, y \in \mathcal{M}$ and $w \in T_x \mathcal{M}$ we use $\langle w, y - x \rangle \stackrel{\text{def}}{=} -\langle w, x - y \rangle \stackrel{\text{def}}{=} \langle w, \operatorname{Exp}_x^{-1}(y) \rangle_x$.

• μ -strongly geodesic convexity of $F : \mathcal{M} \to \mathbb{R}$:

$$F(y) \geq F(x) + \langle
abla F(x), y - x
angle + rac{\mu}{2} d(x, y)^2, ext{ for } \mu > 0, orall x, y \in \mathcal{M}.$$

L-smoothness:


$$F(y) \leq F(x) + \langle \nabla F(x), y - x \rangle + rac{L}{2} d(x, y)^2, \quad \forall x, y \in \mathcal{M}.$$

If F satisfies the μ -strong convexity inequality for $\mu = 0$ we say F is geodesically convex (g-convex).

A set X is uniquely geodesically convex if there is one and only one geodesic between two points, and it remains in X.

Nesterov's Accelerated Gradient Descent (AGD) Methods

Optimal first-order method for the minimization of Euclidean convex (resp. μ-strongly convex) and L-smooth functions.

Accelerated Gradient Descent can be seen as a combination of Gradient Descent and an online learning algorithm that have, respectively, progress and instantaneous regret that are proportional to each other (proportional to $\|\nabla f(x)\|^2$ in the unconstrained case).

Can a Riemannian first-order method enjoy the same rates as Nesterov's AGD does in the Euclidean space?

This work:

> Yes, for a wide class of Hadamard manifolds, up to log factors and geometric constants.

Can a Riemannian first-order method enjoy the same rates as Nesterov's AGD does in the Euclidean space?

This work:

- > Yes, for a wide class of Hadamard manifolds, up to log factors and geometric constants.
- Crucially, we can enforce the iterates to stay in a pre-specified bounded set.

Can a Riemannian first-order method enjoy the same rates as Nesterov's AGD does in the Euclidean space?

This work:

- > Yes, for a wide class of Hadamard manifolds, up to log factors and geometric constants.
- Crucially, we can enforce the iterates to stay in a pre-specified bounded set.
- We develop an inexact Riemannian proximal point method and a way to implement it via first-order methods.

Can a Riemannian first-order method enjoy the same rates as Nesterov's AGD does in the Euclidean space?

This work:

- > Yes, for a wide class of Hadamard manifolds, up to log factors and geometric constants.
- Crucially, we can enforce the iterates to stay in a pre-specified bounded set.
- We develop an inexact Riemannian proximal point method and a way to implement it via first-order methods.
- ► We boost convergence by using a ball-optimization oracle argument.

Can a Riemannian first-order method enjoy the same rates as Nesterov's AGD does in the Euclidean space?

This work:

- > Yes, for a wide class of Hadamard manifolds, up to log factors and geometric constants.
- Crucially, we can enforce the iterates to stay in a pre-specified bounded set.
- We develop an inexact Riemannian proximal point method and a way to implement it via first-order methods.
- ▶ We boost convergence by using a ball-optimization oracle argument.

In our follow-up (MRC+23): all Hadamard manifolds. Better geometric constants.

Estimate a regularized lower bound on $f(x^*)$ by "moving" the bound and aggregating.

- Estimate a regularized lower bound on $f(x^*)$ by "moving" the bound and aggregating.
- ► The Moreau envelope $M_{\lambda,f}(x) \mapsto \min_{x \in \mathcal{X}} \{f(x) + \frac{1}{2\lambda} d(x, \hat{x})^2\}$ is g-convex in Hadamard manifolds. Use it to get greater descent than with RGD.

- Estimate a regularized lower bound on $f(x^*)$ by "moving" the bound and aggregating.
- ► The Moreau envelope $M_{\lambda,f}(x) \mapsto \min_{x \in \mathcal{X}} \{f(x) + \frac{1}{2\lambda} d(x, \hat{x})^2\}$ is g-convex in Hadamard manifolds. Use it to get greater descent than with RGD.
- lnexact proximal point method. Subproblems are strongly g-convex and smooth with condition number $O(\zeta)$ (independent from the conditioning of f).

- Estimate a regularized lower bound on $f(x^*)$ by "moving" the bound and aggregating.
- ► The Moreau envelope $M_{\lambda,f}(x) \mapsto \min_{x \in \mathcal{X}} \{f(x) + \frac{1}{2\lambda} d(x, \hat{x})^2\}$ is g-convex in Hadamard manifolds. Use it to get greater descent than with RGD.
- lnexact proximal point method. Subproblems are strongly g-convex and smooth with condition number $O(\zeta)$ (independent from the conditioning of f).
- ► In a ball $\overline{B}(x_0, D)$ (*D* not dependent on the condition number of *f*) the pull-back of the prox function to the Euclidean space via $f(\text{Exp}_{x_0}(x)) + \frac{1}{2\lambda}d(\text{Exp}_{x_0}(x), \hat{x})^2$ is strongly convex with condition number $O(\zeta)$.

Proximal subproblem and Ball Optimization Oracle

After using a warm start, we can approximate the prox with linear rates.

▶ Using this procedure we can implement an approximate ball optimization oracle.

Distance to x* with an exact ball optimization oracle does not increase and the distance is controlled with an approximate ball optimization oracle.

• $\tilde{O}(\zeta)$ ball optimization iterations suffice to optimize.

Comparison with Related Work

Method	g-convex	μ-st. g-cvx	K?	G?	F?	C ?	K? = curvature;
(Nes05)	$O(\sqrt{\frac{LR^2}{\varepsilon}})$	$\widetilde{O}(\sqrt{\kappa})$	0	1	1	✓	G? =global?
(ZS18)	-	$\widetilde{O}(\sqrt{\kappa})$	R	L	1	×	F?= fully acceler-
(AS20)	-	$\widetilde{O}(\kappa)$	R	1	×	×	ated?
(Mar22)	$\widetilde{O}(\zeta^{\frac{3}{2}}\sqrt{\zeta+\frac{LR^2}{\varepsilon}})$	$\widetilde{O}(\zeta^{\frac{3}{2}}\sqrt{\kappa})$	с	1	1	1	C ? = enforces some
(CB22)	-	$O(\sqrt{\kappa})$	R*	Ľ'	1	1	constraints?
(KY22)	$O(\zeta \sqrt{\frac{LR^2}{\varepsilon}})$	$O(\zeta\sqrt{\kappa})$	R	✓	✓	×	$\kappa \stackrel{\scriptscriptstyle m def}{=} L/\mu.$
This work	$\widetilde{O}(\zeta^2\sqrt{\zeta+rac{LR^2}{arepsilon}})$	$\widetilde{O}(\zeta^2\sqrt{\kappa})$	H*	1	1	 Image: A second s	H = Hadamard.
This work**	$\widetilde{O}(\zeta \sqrt{\zeta + rac{LR^2}{arepsilon}})$	$\widetilde{O}(\zeta\sqrt{\kappa})$	Н	1	1	1	R = Riemannian.
(MRC+23)	$\widetilde{O}(\zeta^{\frac{3}{2}}\sqrt{\zeta+\frac{LR^2}{\varepsilon}})$	$\widetilde{O}(\zeta^{\frac{3}{2}}\sqrt{\kappa})$	Н	1	1	1	c = ctant. curv.
(MRC+23)**	$\widetilde{O}(\zeta^{\frac{1}{2}}\sqrt{\zeta+\frac{LR^2}{\varepsilon}})$	$\widetilde{O}(\sqrt{\zeta\kappa}+\zeta)$	Н	✓	1	 Image: A second s	Lower bound:
$\ \nabla \mathcal{R}\ = 0$. Most applications satisfy this. Bounded by a constant works.							$\widetilde{\Omega}(\zeta+\sqrt{\kappa})$

* $\|\nabla \mathcal{R}\| = 0$. Most applications satisfy this. Bounded by a constant works. ** Requires possibly hard projection. But useful for grad. oracle complexity. ► Other manifolds: positive curvature, bounded curvature.

Remove extra logarithmic factors.

> Can geometric constants be reduced? Maybe we need better lower bounds.

Stochastic case.