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Riemannian Optimization

For a Riemannian manifold M:
min
x∈M

f (x).

I Spheres, hyperbolic spaces.
I SPD matrices.
I SO(n) (real orthogonal matrices

with det(A) = 1).
I Stiefel manifold Vk(Rn) (ordered

orthonormal basis of a k-dim vector
space).

I ...
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Riemannian Optimization

For a Riemannian manifold M:

min
x∈M

f (x).

I Constrained → unconstrained.

I A function can be non-convex in the Euclidean case but geodesically convex on a manifold with
the right metric → Fast algorithms.
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Riemannian Optimization - Applications

I Principal Components Analysis (Jolliffe et al., 2003; Genicot et al., 2015; Huang and Wei,
2019).

I Low-rank matrix completion (Cambier and Absil, 2016; Heidel and Schulz, 2018; Mishra and
Sepulchre, 2014; Tan et al., 2014; Vandereycken, 2013).

I Dictionary learning (Cherian and Sra, 2017; Sun et al., 2017).

I Optimization under orthogonality constraints (Edelman et al., 1998)

I Robust covariance estimation in Gaussian distributions (Wiesel, 2012).

I Gaussian mixture models (Hosseini and Sra, 2015).

I Operator scaling (Allen-Zhu et al., 2018).

I Wasserstein Barycenters (Hosseini and Sra, 2020)

I Many more...
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Geodesic Convexity

Notation: Let M be a Riemannian manifold. Given x , y ∈M and w ∈ TxM we use
〈w , y − x〉 def

= −〈w , x − y〉 def
= 〈w ,Exp−1

x (y)〉x .

M

y = Expx(v)

v

TxM

x
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Geodesic Convexity

Notation: Let M be a Riemannian manifold. Given x , y ∈M and w ∈ TxM we use
〈w , y − x〉 def

= −〈w , x − y〉 def
= 〈w ,Exp−1

x (y)〉x .

I µ-strongly geodesic convexity of F : M→ R:

F (y) ≥ F (x) + 〈∇F (x), y − x〉+
µ

2
d(x , y)2, for µ > 0,∀x , y ∈M.

I L-smoothness:

F (y) ≤ F (x) + 〈∇F (x), y − x〉+
L

2
d(x , y)2, ∀x , y ∈M.

If F satisfies the µ-strong convexity inequality for µ = 0 we say F is geodesically convex (g-convex).
I A set X is uniquely geodesically convex if there is one and only one geodesic between two points,

and it remains in X.
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Nesterov’s Accelerated Gradient Descent (AGD) Methods

I Optimal first-order method for the minimization of Euclidean convex (resp. µ-strongly convex)
and L-smooth functions.

µ = 0 µ > 0 [κ def
= L/µ]

Gradient Descent O(L/ε) O(κ log 1/ε)

Accelerated Gradient Descent O(
√

L/ε) O(
√
κ log 1/ε)

Accelerated Gradient Descent can be seen as a combination of Gradient Descent and an online
learning algorithm that have, respectively, progress and instantaneous regret that are proportional to
each other (proportional to ‖∇f (x)‖2 in the unconstrained case).
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Problem

Can a Riemannian first-order method enjoy the same rates as Nesterov’s AGD does in the Euclidean
space?

This work:

I Yes, for a wide class of Hadamard manifolds, up to log factors and geometric constants.

I Crucially, we can enforce the iterates to stay in a pre-specified bounded set.

I We develop an inexact Riemannian proximal point method and a way to implement it via
first-order methods.

I We boost convergence by using a ball-optimization oracle argument.

In our follow-up (MRC+23): all Hadamard manifolds. Better geometric constants.
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A Riemannian accelerated inexact proximal point method

I Estimate a regularized lower bound on f (x∗) by “moving” the bound and aggregating.

I The Moreau envelope Mλ,f (x) 7→ minx∈X{f (x) + 1
2λd(x , x̂)2} is g-convex in Hadamard

manifolds. Use it to get greater descent than with RGD.

I Inexact proximal point method. Subproblems are strongly g-convex and smooth with condition
number O(ζ) (independent from the conditioning of f ).

I In a ball B̄(x0,D) (D not dependent on the condition number of f ) the pull-back of the prox
function to the Euclidean space via f (Expx0(x)) + 1

2λd(Expx0(x), x̂)2 is strongly convex with
condition number O(ζ).
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Proximal subproblem and Ball Optimization Oracle

I After using a warm start, we can approximate the prox with linear rates.

I Using this procedure we can implement an approximate ball optimization oracle.

I Distance to x∗ with an exact ball optimization oracle does not increase and the distance is
controlled with an approximate ball optimization oracle.

I Õ(ζ) ball optimization iterations suffice to optimize.
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Comparison with Related Work

Method g-convex µ-st. g-cvx K? G? F? C?

(Nes05) O(
√

LR2

ε ) Õ(
√
κ) 0 3 3 3

(ZS18) - Õ(
√
κ) R L 3 7

(AS20) - Õ(κ) R 3 7 7

(Mar22) Õ(ζ
3
2

√
ζ + LR2

ε ) Õ(ζ
3
2
√
κ) c 3 3 3

(CB22) - O(
√
κ) R∗ L’ 3 3

(KY22) O(ζ
√

LR2

ε ) O(ζ
√
κ) R 3 3 7

This work Õ(ζ2
√
ζ + LR2

ε ) Õ(ζ2√κ) H∗ 3 3 3

This work∗∗ Õ(ζ
√
ζ + LR2

ε ) Õ(ζ
√
κ) H 3 3 3

(MRC+23) Õ(ζ
3
2

√
ζ + LR2

ε ) Õ(ζ
3
2
√
κ) H 3 3 3

(MRC+23)∗∗ Õ(ζ
1
2

√
ζ + LR2

ε ) Õ(
√
ζκ+ ζ) H 3 3 3

∗ ‖∇R‖ = 0. Most applications satisfy this. Bounded by a constant works.
∗∗ Requires possibly hard projection. But useful for grad. oracle complexity.

K? = curvature;

G?=global?

F?= fully acceler-
ated?

C? = enforces some
constraints?

κ
def
= L/µ.

H = Hadamard.

R = Riemannian.

c = ctant. curv.

Lower bound:
Ω̃(ζ +

√
κ)
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Future work

I Other manifolds: positive curvature, bounded curvature.

I Remove extra logarithmic factors.

I Can geometric constants be reduced? Maybe we need better lower bounds.

I Stochastic case.
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