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a-Fairness and Proportional Fairness

a-fairness: a family of fair objectives

Maximize the (1 — «)-mean of coordinates of a point in a convex set.
* o = 0 = arithmetic mean, maximize utility, no fairness.
® o =1 = geometric mean, proportional fairness.
® o — oo = max-min fairness.

In this work: Proportional fairness.

e Studied in economics in Nash bargaining solutions, in game
theory, multi-resource allocation in compute clusters, rate
control in networks.

e The applications in bold have packing constraints: Ax < b, where
Ajj > 0,b; > 0,x € RL,, which is what we focus on.
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Application Example: Fair Multicommodity Flow

e Pairs server-user in a shared network with limited link capacities.
e How much flow should each pair receive?
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Packing Proportional Fairness and its Dual

After a simple reformulation wlog our problem is, for A € Mp(R>o):

n
def
X) = logx; : Ax < 1 .
x?ufnfo{f() > logx; : Ax < m}

i=1

And its Lagrange dual is:

min {g()\) o Zn: log(AT\); — n Iogn} ,

ream :
i=1

fast

e Approximate primal solution 4 approximate dual solution.
e We design two very different algorithms for each problem.

e We find an application of the dual solution to the simplexoid
algorithm of (Yamnitsky and Levin, 1982) for linear programming.
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Results and Comparison

Paper Problem | Iterations Width-dependence?
(Beck et al., 2014) Primal | O(p’mn/e) Yes
(Marasevic et al., 2016) Primal | O(n5/e5) No
(Diakonikolas et al., 2020) | Primal | O(n?/<?) No
CMP (Theorem 5) Primal | O(n/e) No
(Beck et al., 2014) Dual O(p\/mn/e Yes
CMP (Theorem 9) Dual | O(n?/e) No
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Online learning

Online convex optimization: A sequential game

You play x; € C, an adversary picks a convex loss ¢; and you pay #(xt).
How good can the regret be?

Regret = Zét Xt) — mln th

If you use 4:(-) = (Vf(xt), -), you can reduce convex optimization to
online convex optimization:

T

ZX fix) < = Z(Vf(xf),xf —x") < % Regret

But you can use other losses: we will use a truncated gradient
V(%) = (min{Vfr(x),1}, ..., min{Vnfr(x),1}) for the primal problem.
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Acceleration

Usually fast algorithms are obtained by combining a gradient descent

algorithm with an online learning algorithm: Progress of the former
compensates instantaneous regret of the latter.

IVF I
2L

We use non-standard versions of an algorithm that makes primal
progress and of an online learning algorithm.
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Primal problem
Reparametrize x — exp(y) and remove constraints by adding a fast
growing barrier (Diakonikolas et al, 2020):

B

n 1+
)= =Dyt 1+,BZ(AeXp y));” , where 3 ~
i=1

Proposition: If y¢ is an e-minimizer of f,, then
is an O(e)-maximizer of f.

9
nlog(mn?/e)

y© is feasible and

1
1+e/n
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Primal problem

1. Smoothness and Lipschitz constants are bad but the objective
has structure:

ifr(x) € [-1,00) for j € [n].
* A small gradient step decreases the function value significantly:

(Vfr(x), B) = fr(x) = fr(x = A) = <Vfr(X) A) = o,
for A € R" satisfying the following:

def

A; = 2|
ACEG))

min{Vf(x),1}, V¢ €[0,1],Vj € [n].
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Primal problem

1. Smoothness and Lipschitz constants are bad but the objective
has structure:

* Vifi(x) € [-1,00) for j € [n].
* A small gradient step decreases the function value significantly:

(V). ) = Fi(x) — flx — ) = Z(VFi(x), 2) > o,

for A € R" satisfying the following:

def G

PN
T CEEG))
2. We run Mirror Descent on truncated losses.

min{Vf(x),1}, V¢ €[0,1],Vj € [n].

T

;
(G D)) < 3 D (VR ) =TF ) xi—x )+ (TF06). % — X°)

i=1

Regret;

3. The gradient step compensates the MD regret and the regret we
ignored due to truncation.
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Accelerated, Distr., Deterministic and Width-Indep.

e We carefully choose several parameters (depending on known
quantities): learning rates 7y, coupling parameter 7, number of
iterations T, etc. Then, the algorithm has a simple form below.

e Qur algorithm is distributed, deterministic and we prove
deterministic guarantees.

Algorithm 1 Accelerated descent method for 1-Fair Packing
Input: Normalized matrix A € Mpy«n(R>0) and accuracy e.

1 X0 — y(@) 20 )1,

2: fork=1to T do

3 xR z(k=1) (4 — 7 )y(R=Y)

e Z(R) argmin, g {ﬁ HZ — Z(k_1)H§ + <nk7f(x(k)),z>}
s Y e x(®) 4 o1 (200 — Z(k1)) o Gradient descent step
6
7

: end for
. return X < exp(y(M) /(14 ¢/n)
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Dual Problem: The Centroid Map and a Reduction

def n . < = i i
P=1{x€R :AX < Im}, < (nhﬁ""nhn)’
D = convi{A; : i € [m]} D = (conv{A; : i € [m]} + (—00,0]") NRL,

i (D) C ¢(D")

min_ {g(p) “ max (A, p) }.

pec(Dt) ie[m]

718 Proposition: If p = c(A"\) and p is an (¢/n)-minimizer of
=/ g,then \is an e-minimizer of the dual problem g. 10/ 12



Dual Problem: The PST Framework

Optimizing § is an (approximate) linear feasibility problem: Find
x € ¢(DT) such that Ax < (1+¢)1p.

PST Framework
e Generate a covering constraint as h = AT\, for weights A\ € A™.
e Use an oracle to satisfy h: Find x € ¢(D") s.t. (h,x) <1

e Increase the weight \; the more, the greater (A;,x) —1 € [T, 0] s,
i.e., the more x does not satisfy A; (MWs algorithm).

e Guarantees convergence in O(o7/e?).

)
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Improving over PST: Adaptive Oracle
The closer we are to a solution the smaller the lens L; is.
= the smaller 7 and ¢ are.

Improved strategy
e Implement an oracle that yields smaller 75 and o5 if § is lower.
e Start with a 6-minimizer of g.

® Find a 6/2-minimizer using the adaptive oracle and PST: It takes
O(7505/(6/2)?).
e Repeat until § < /n. Total complexity is O(n?/e).

)
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