Fast Algorithms for Packing Proportional Fairness and its Dual

David Martínez-Rubio
joint work with Francisco Criado and Sebastian Pokutta

Zuse Institute Berlin

Math+ Spotlight • July 13, 2022

Berlin Mathematics Research Center

α-Fairness and Proportional Fairness

α-fairness: a family of fair objectives

Maximize the $(1-\alpha)$-mean of coordinates of a point in a convex set.

- $\alpha=\mathrm{O} \Rightarrow$ arithmetic mean, maximize utility, no fairness.
- $\alpha=1 \Rightarrow$ geometric mean, proportional fairness.
- $\alpha \rightarrow \infty \Rightarrow$ max-min fairness.

In this work: Proportional fairness.

- Studied in economics in Nash bargaining solutions, in game theory, multi-resource allocation in compute clusters, rate control in networks.
- The applications in bold have packing constraints: $A x \leq b$, where $A_{i j} \geq 0, b_{i}>0, x \in \mathbb{R}_{\geq 0}^{n}$, which is what we focus on.

Application Example: Fair Multicommodity Flow

- Pairs server-user in a shared network with limited link capacities.
- How much flow should each pair receive?

Packing Proportional Fairness and its Dual

After a simple reformulation wlog our problem is, for $A \in \mathcal{M}_{n}\left(\mathbb{R}_{\geq 0}\right)$:

$$
\max _{x \in \mathbb{R}_{\geq 0}^{n}}\left\{f(x) \stackrel{\text { def }}{=} \sum_{i=1}^{n} \log x_{i}: A x \leq \mathbb{1}_{m}\right\} .
$$

And its Lagrange dual is:

$$
\min _{\lambda \in \Delta^{m}}\left\{g(\lambda) \stackrel{\text { def }}{=}-\sum_{i=1}^{n} \log \left(A^{\top} \lambda\right)_{i}-n \log n\right\},
$$

- Approximate primal solution $\stackrel{\text { fast }}{\nrightarrow}$ approximate dual solution.
- We design two very different algorithms for each problem.
- We find an application of the dual solution to the simplexoid algorithm of (Yamnitsky and Levin, 1982) for linear programming.

Results and Comparison

Paper	Problem	Iterations	Width-dependence?
(Beck et al., 2014)	Primal	$O\left(\rho^{2} m n / \varepsilon\right)$	Yes
(Marašević et al., 2016)	Primal	$\widetilde{O}\left(n^{5} / \varepsilon^{5}\right)$	nearly No (polylog)
(Diakonikolas et al., 2020)	Primal	$\widetilde{O}\left(n^{2} / \varepsilon^{2}\right)$	nearly No (polylog)
CMP (Theorem 5)	Primal	$\widetilde{O}(n / \varepsilon)$	No
(Beck et al., 2014)	Dual	$O(\rho \sqrt{m n / \varepsilon})$	Yes
CMP (Theorem 9)	Dual	$\widetilde{O}\left(n^{2} / \varepsilon\right)$	No

Online learning

Online convex optimization: A sequential game

You play $x_{t} \in \mathcal{C}$, an adversary picks a convex loss ℓ_{t} and you pay $\ell_{t}\left(x_{t}\right)$. How good can the regret be?

$$
\text { Regret } \stackrel{\text { def }}{=} \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{u \in \mathcal{C}} \sum_{t=1}^{T} \ell_{t}(u)
$$

If you use $\ell_{t}(\cdot)=\left\langle\nabla f\left(x_{t}\right), \cdot\right\rangle$, you can reduce convex optimization to online convex optimization:

$$
f\left(\frac{1}{T} \sum_{i=1}^{T} x_{i}\right)-f\left(x^{*}\right) \leq \frac{1}{T} \sum_{i=1}^{T}\left\langle\nabla f\left(x_{i}\right), x_{i}-x^{*}\right\rangle \leq \frac{1}{T} \text { Regret }
$$

But you can use other losses: we will use a truncated gradient $\overline{\nabla f_{r}}(x) \stackrel{\text { def }}{=}\left(\min \left\{\nabla_{1} f_{r}(x), 1\right\}, \ldots, \min \left\{\nabla_{n} f_{r}(x), 1\right\}\right)$ for the primal problem.

Acceleration

Usually fast algorithms are obtained by combining a gradient descent algorithm with an online learning algorithm: Progress of the former compensates instantaneous regret of the latter.

We use non-standard versions of an algorithm that makes primal progress and of an online learning algorithm.

Primal problem

Reparametrize $x \rightarrow \exp (y)$ and remove constraints by adding a fast growing barrier (Diakonikolas et al, 2020):

$$
f_{r}(y) \stackrel{\text { def }}{=}-\sum_{i=1}^{n} y_{i}+\frac{\beta}{1+\beta} \sum_{i=1}^{m}(A \exp (y))_{i}^{\frac{1+\beta}{\beta}}, \text { where } \beta \approx \frac{\varepsilon}{n \log \left(m n^{2} / \varepsilon\right)} .
$$

Proposition: If y^{ε} is an ε-minimizer of f_{r}, then $\frac{1}{1+\varepsilon / n} y^{\varepsilon}$ is feasible and is an $O(\varepsilon)$-maximizer of f.

Primal problem

1. Smoothness and Lipschitz constants are bad but the objective has structure:

- $\nabla_{j} f_{r}(x) \in[-1, \infty)$ for $j \in[n]$.
- A small gradient step decreases the function value significantly:

$$
\left\langle\nabla f_{r}(x), \Delta\right\rangle \geq f_{r}(x)-f_{r}(x-\Delta) \geq \frac{1}{2}\left\langle\nabla f_{r}(x), \Delta\right\rangle \geq 0
$$

for $\Delta \in \mathbb{R}^{n}$ satisfying the following:

$$
\Delta_{j} \stackrel{\text { def }}{=} \frac{c_{j} \beta}{4(1+\beta)} \min \left\{\nabla_{j} f_{r}(x), 1\right\}, \quad \forall c_{j} \in[0,1], \forall j \in[n]
$$

Primal problem

1. Smoothness and Lipschitz constants are bad but the objective has structure:

- $\nabla_{j} f_{r}(x) \in[-1, \infty)$ for $j \in[n]$.
- A small gradient step decreases the function value significantly:

$$
\left\langle\nabla f_{r}(x), \Delta\right\rangle \geq f_{r}(x)-f_{r}(x-\Delta) \geq \frac{1}{2}\left\langle\nabla f_{r}(x), \Delta\right\rangle \geq 0
$$

for $\Delta \in \mathbb{R}^{n}$ satisfying the following:

$$
\Delta_{j} \stackrel{\text { def }}{=} \frac{c_{j} \beta}{4(1+\beta)} \min \left\{\nabla_{j} f_{r}(x), 1\right\}, \quad \forall c_{j} \in[0,1], \forall j \in[n] .
$$

2. We run Mirror Descent on truncated losses.

$$
f_{r}\left(\frac{1}{T} \sum_{i=1}^{T} x_{i}\right)-f_{r}\left(x^{*}\right) \leq \frac{1}{T} \sum_{i=1}^{T}\left\langle\nabla f_{r}\left(x_{i}\right)-\overline{\nabla f_{r}}\left(x_{i}\right), x_{i}-x^{*}\right\rangle+\underbrace{\left\langle\overline{\nabla f_{r}}\left(x_{i}\right), x_{i}-x^{*}\right\rangle}_{\text {Regret }_{i}}
$$

3. The gradient step compensates the MD regret and the regret we ignored due to truncation.

Accelerated, Distr., Deterministic and Width-Indep.

- We carefully choose several parameters (depending on known quantities): learning rates η_{k}, coupling parameter τ, number of iterations T, etc. Then, the algorithm has a simple form below.
- Our algorithm is distributed, deterministic and we prove deterministic guarantees.
Algorithm 1 Accelerated descent method for 1-Fair Packing
Input: Normalized matrix $A \in \mathcal{M}_{m \times n}\left(\mathbb{R}_{\geq 0}\right)$ and accuracy ε.
1: $x^{(0)} \leftarrow y^{(0)} \leftarrow z^{(0)} \leftarrow-\omega \mathbb{1}_{n}$
2: for $k=1$ to T do
3: $\quad x^{(k)} \leftarrow \tau \boldsymbol{Z}^{(k-1)}+(1-\tau) y^{(k-1)}$
4: $\quad z^{(k)} \leftarrow \operatorname{argmin}_{z \in B}\left\{\frac{1}{2 \omega}\left\|z-z^{(k-1)}\right\|_{2}^{2}+\left\langle\eta_{k} \overline{\nabla f}\left(x^{(k)}\right), z\right\rangle\right\}$
5: $\quad y^{(k)} \leftarrow x^{(k)}+\frac{1}{\eta_{k} L}\left(z^{(k)}-z^{(k-1)}\right) \quad \diamond$ Gradient descent step
6: end for
7: return $\widehat{x} \stackrel{\text { def }}{=} \exp \left(y^{(T)}\right) /(1+\varepsilon / n)$

Dual Problem: The Centroid Map and a Reduction

$\mathcal{P} \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}_{\geq 0}^{n}: A x \leq \mathbb{1}_{m}\right\}$, $c(h)=\left(\frac{1}{n h_{1}}, \ldots, \frac{1}{n h_{n}}\right)$, $\mathcal{D}=\operatorname{conv}\left\{A_{i}: i \in[m]\right\} \quad \mathcal{D}^{+}=\left(\operatorname{conv}\left\{A_{i}: i \in[m]\right\}+(-\infty, o]^{n}\right) \cap \mathbb{R}_{\geq 0}^{n}$

$$
\min _{p \in c\left(\mathcal{D}^{+}\right)}\left\{\hat{g}(p) \stackrel{\text { def }}{=} \max _{i \in[m]}\left\langle A_{i}, p\right\rangle\right\} .
$$

Proposition: If $p=c\left(A^{\top} \lambda\right)$ and p is an (ε / n)-minimizer of \hat{g}, then λ is an ε-minimizer of the dual problem g.

Dual Problem: The PST Framework

 Optimizing \hat{g} is an (approximate) linear feasibility problem: Find $x \in c\left(D^{+}\right)$such that $A x \leq(1+\varepsilon) \mathbb{1}_{m}$.
PST Framework

- Generate a covering constraint as $h=A^{T} \lambda$, for weights $\lambda \in \Delta^{m}$.
- Use an oracle to satisfy h : Find $x \in c\left(D^{+}\right)$s.t. $\langle h, x\rangle \leq 1$
- Increase the weight λ_{i} the more, the greater $\left\langle A_{i}, x\right\rangle-1 \in[-\tau, \sigma]$ is, i.e., the more x does not satisfy A_{i} (MWs algorithm).
- Guarantees convergence in $O\left(\sigma \tau / \varepsilon^{2}\right)$.

Improving over PST: Adaptive Oracle

The closer we are to a solution the smaller the lens L_{δ} is.
\Rightarrow the smaller τ and σ are.

Improved strategy

- Implement an oracle that yields smaller τ_{δ} and σ_{δ} if δ is lower.
- Start with a δ-minimizer of \hat{g}.
- Find a $\delta / 2$-minimizer using the adaptive oracle and PST: It takes $O\left(\tau_{\delta} \sigma_{\delta} /(\delta / 2)^{2}\right)$.
- Repeat until $\delta<\varepsilon / n$. Total complexity is $O\left(n^{2} / \varepsilon\right)$.

