
Fast Algorithms for Packing Proportional Fairness
and its Dual

David Martı́nez-Rubio
joint work with Francisco Criado and Sebastian Pokutta

Zuse Institute Berlin

Math+ Spotlight · July 13, 2022

Berlin Mathematics Research Center

MATH

α-Fairness and Proportional Fairness

α-fairness: a family of fair objectives
Maximize the (1− α)-mean of coordinates of a point in a convex set.
• α = 0⇒ arithmetic mean, maximize utility, no fairness.
• α = 1⇒ geometric mean, proportional fairness.
• α→∞⇒ max-min fairness.

In this work: Proportional fairness.
• Studied in economics in Nash bargaining solutions, in game

theory, multi-resource allocation in compute clusters, rate
control in networks.
• The applications in bold have packing constraints: Ax ≤ b, where
Aij ≥ 0,bi > 0, x ∈ Rn

≥0, which is what we focus on.

1 / 12

Application Example: Fair Multicommodity Flow

• Pairs server-user in a shared network with limited link capacities.
• How much flow should each pair receive?

2 / 12

Packing Proportional Fairness and its Dual
After a simple reformulation wlog our problem is, for A ∈Mn(R≥0):

max
x∈Rn

≥0

{
f (x)

def
=

n∑
i=1

log xi : Ax ≤ 1m

}
.

And its Lagrange dual is:

min
λ∈∆m

{
g(λ)

def
= −

n∑
i=1

log(ATλ)i − n log n
}
,

• Approximate primal solution
fast

6→ approximate dual solution.
• We design two very di�erent algorithms for each problem.
• We find an application of the dual solution to the simplexoid

algorithm of (Yamnitsky and Levin, 1982) for linear programming.

3 / 12

Results and Comparison

Paper Problem Iterations Width-dependence?
(Beck et al., 2014) Primal O(ρ2mn/ε) Yes
(Marašević et al., 2016) Primal Õ(n5/ε5) nearly No (polylog)
(Diakonikolas et al., 2020) Primal Õ(n2/ε2) nearly No (polylog)
CMP (Theorem 5) Primal Õ(n/ε) No
(Beck et al., 2014) Dual O(ρ

√
mn/ε) Yes

CMP (Theorem 9) Dual Õ(n2/ε) No

4 / 12

Online learning

Online convex optimization: A sequential game
You play xt ∈ C, an adversary picks a convex loss `t and you pay `t(xt).
How good can the regret be?

Regret def
=

T∑
t=1

`t(xt)−min
u∈C

T∑
t=1

`t(u).

If you use `t(·) = 〈∇f (xt), ·〉, you can reduce convex optimization to
online convex optimization:

f (1
T

T∑
i=1

xi)− f (x∗) ≤
1
T

T∑
i=1

〈∇f (xi), xi − x∗〉 ≤
1
T

Regret

But you can use other losses: we will use a truncated gradient
∇fr(x)

def
= (min{∇1fr(x), 1}, . . . ,min{∇nfr(x), 1}) for the primal problem.

5 / 12

Acceleration

Usually fast algorithms are obtained by combining a gradient descent
algorithm with an online learning algorithm: Progress of the former
compensates instantaneous regret of the latter.

We use non-standard versions of an algorithm that makes primal
progress and of an online learning algorithm.

6 / 12

Primal problem
Reparametrize x→ exp(y) and remove constraints by adding a fast
growing barrier (Diakonikolas et al, 2020):

fr(y)
def
= −

n∑
i=1

yi +
β

1 + β

m∑
i=1

(A exp(y))
1+β
β

i , where β ≈ ε

n log(mn2/ε)
.

Proposition: If yε is an ε-minimizer of fr, then 1
1+ε/ny

ε is feasible and
is an O(ε)-maximizer of f .

7 / 12

Primal problem
1. Smoothness and Lipschitz constants are bad but the objective

has structure:
• ∇jfr(x) ∈ [−1,∞) for j ∈ [n].
• A small gradient step decreases the function value significantly:

〈∇fr(x),∆〉 ≥ fr(x)− fr(x −∆) ≥ 1
2 〈∇fr(x),∆〉 ≥ 0,

for ∆ ∈ Rn satisfying the following:

∆j
def
=

cjβ
4(1 + β)

min{∇jfr(x), 1}, ∀cj ∈ [0, 1],∀j ∈ [n].

2. We run Mirror Descent on truncated losses.

fr(
1
T

T∑
i=1

xi)−fr(x∗) ≤
1
T

T∑
i=1

〈∇fr(xi)−∇fr(xi), xi−x∗〉+〈∇fr(xi), xi − x∗〉︸ ︷︷ ︸
Regreti

3. The gradient step compensates the MD regret and the regret we
ignored due to truncation.

8 / 12

Primal problem
1. Smoothness and Lipschitz constants are bad but the objective

has structure:
• ∇jfr(x) ∈ [−1,∞) for j ∈ [n].
• A small gradient step decreases the function value significantly:

〈∇fr(x),∆〉 ≥ fr(x)− fr(x −∆) ≥ 1
2 〈∇fr(x),∆〉 ≥ 0,

for ∆ ∈ Rn satisfying the following:

∆j
def
=

cjβ
4(1 + β)

min{∇jfr(x), 1}, ∀cj ∈ [0, 1],∀j ∈ [n].

2. We run Mirror Descent on truncated losses.

fr(
1
T

T∑
i=1

xi)−fr(x∗) ≤
1
T

T∑
i=1

〈∇fr(xi)−∇fr(xi), xi−x∗〉+〈∇fr(xi), xi − x∗〉︸ ︷︷ ︸
Regreti

3. The gradient step compensates the MD regret and the regret we
ignored due to truncation.

8 / 12

Accelerated, Distr., Deterministic and Width-Indep.
• We carefully choose several parameters (depending on known

quantities): learning rates ηk, coupling parameter τ , number of
iterations T, etc. Then, the algorithm has a simple form below.
• Our algorithm is distributed, deterministic and we prove

deterministic guarantees.
Algorithm 1 Accelerated descent method for 1-Fair Packing
Input: Normalized matrix A ∈Mm×n(R≥0) and accuracy ε.

1: x(0) ← y(0) ← z(0) ← −ω1n
2: for k = 1 to T do
3: x(k) ← τz(k−1) + (1− τ)y(k−1)

4: z(k) ← argminz∈B

{
1

2ω
∥∥z− z(k−1)

∥∥2
2 + 〈ηk∇f (x(k)), z〉

}
5: y(k) ← x(k) + 1

ηkL
(z(k)− z(k−1)) � Gradient descent step

6: end for
7: return x̂ def

= exp(y(T))/(1 + ε/n)

9 / 12

Dual Problem: The Centroid Map and a Reduction

P def
= {x ∈ Rn

≥0 : Ax ≤ 1m}, c(h) =

(
1
nh1

, . . . ,
1
nhn

)
,

D = conv{Ai : i ∈ [m]} D+ = (conv{Ai : i ∈ [m]}+ (−∞,0]n) ∩Rn
≥0

min
p∈c(D+)

{
ĝ(p)

def
= max

i∈[m]
〈Ai,p〉

}
.

Proposition: If p = c(ATλ) and p is an (ε/n)-minimizer of
ĝ, then λ is an ε-minimizer of the dual problem g. 10 / 12

Dual Problem: The PST Framework
Optimizing ĝ is an (approximate) linear feasibility problem: Find
x ∈ c(D+) such that Ax ≤ (1 + ε)1m.
PST Framework
• Generate a covering constraint as h = ATλ, for weights λ ∈ ∆m.
• Use an oracle to satisfy h: Find x ∈ c(D+) s.t. 〈h, x〉 ≤ 1
• Increase the weight λi the more, the greater 〈Ai, x〉 − 1 ∈ [−τ, σ] is,

i.e., the more x does not satisfy Ai (MWs algorithm).
• Guarantees convergence in O(στ/ε2).

11 / 12

Improving over PST: Adaptive Oracle
The closer we are to a solution the smaller the lens Lδ is.
⇒ the smaller τ and σ are.
Improved strategy
• Implement an oracle that yields smaller τδ and σδ if δ is lower.
• Start with a δ-minimizer of ĝ.
• Find a δ/2-minimizer using the adaptive oracle and PST: It takes
O(τδσδ/(δ/2)2).
• Repeat until δ < ε/n. Total complexity is O(n2/ε).

12 / 12

