
Global Riemannian Acceleration in Hyperbolic and
Spherical Spaces

David Martínez-Rubio

Department of Computer Science - University of Oxford (Now at Zuse Institute Berlin)



Riemannian Optimization

For a Riemannian manifold M:

min
x∈M

f (x).

I Spheres, hyperbolic spaces.
I SPD matrices.
I SO(n) (real orthogonal

matrices with det(A) = 1).
I Stiefel manifold Vk(Rn)

(ordered orthonormal basis
of a k-dim vector space).

I ...
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Riemannian Optimization

For a Riemannian manifold M:

min
x∈M

f (x).

I Constrained → unconstrained.
I A function can be non-convex in the Euclidean case but geodesically convex

on a manifold with the right metric → Efficient optimization.

Many first-order methods have analogous Riemannian counterparts:
I Deterministic (de Carvalho Bento et al., 2017; Zhang and Sra, 2016).
I Stochastic (Hosseini and Sra, 2017; Khuzani and Li, 2017; Tripuraneni

et al., 2018).
I Variance reduced (Sato et al., 2017, 2019; Zhang et al., 2016).
I Adaptive (Kasai et al., 2019).
I Saddle-point escaping (Criscitiello and Boumal, 2019; Sun et al., 2019;

Zhang et al., 2018; Zhou et al., 2019; Criscitiello and Boumal, 2020).
I Projection free (Weber and Sra, 2017, 2019).
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Riemannian Optimization - Applications

I Low-rank matrix completion (Cambier and Absil, 2016; Heidel and
Schulz, 2018; Mishra and Sepulchre, 2014; Tan et al., 2014; Vandereycken,
2013).

I Dictionary learning (Cherian and Sra, 2017; Sun et al., 2017).
I Optimization under orthogonality constraints (Edelman et al., 1998)

I Some applications to RNNs (Lezcano-Casado and M-R., 2019).
I Robust covariance estimation in Gaussian distributions (Wiesel, 2012).
I Gaussian mixture models (Hosseini and Sra, 2015).
I Operator scaling (Allen-Zhu et al., 2018).
I Sparse principal component analysis (Jolliffe et al., 2003; Genicot et al.,

2015; Huang and Wei, 2019).
I Many more...
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Geodesic Convexity

Notation: Let M be a Riemannian manifold. Given x , y ∈M and v ∈ TxM we
use 〈v , y − x〉 def

= −〈v , x − y〉 def
= 〈v ,Exp−1

x (y)〉x .

4 11



Geodesic Convexity

Notation: Let M be a Riemannian manifold. Given x , y ∈M and v ∈ TxM we
use 〈v , y − x〉 def

= −〈v , x − y〉 def
= 〈v ,Exp−1

x (y)〉x .

I µ-strongly geodesic convexity of F : M→ R:

F (y) ≥ F (x) + 〈∇F (x), y − x〉+ µ

2
d(x , y)2, for µ > 0,∀x , y ∈M.

I L-smoothness:

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ L

2
d(x , y)2, ∀x , y ∈M.

If F satisfies the µ-strong convexity inequality for µ = 0 we say F is geodesically
convex (g-convex).
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Nesterov’s Accelerated Gradient Descent (AGD) Methods

I Optimal first-order method for the minimization of Euclidean convex (resp.
µ-strongly convex) and L-smooth functions.

µ > 0 [κ def
= L/µ] µ = 0

Accelerated Gradient Descent O(
√
κ log 1/ε) O(

√
L/ε)

Gradient Descent O(κ log 1/ε) O(L/ε)

Accelerated Gradient Descent can be seen as a combination of Gradient Descent
and an online learning algorithm that have, respectively, progress and
instantaneous regret that are proportional to each other (proportional to
‖∇f (x)‖2 in the unconstrained case).
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Problem

Can a Riemannian first-order method enjoy the same rates as Nesterov’s
accelerated gradient descent (AGD) does in the Euclidean space?

This work:
I Yes, for functions defined on manifolds of constant sectional curvature K ,

up to log factors and constants depending on K and the initial distance R
to a minimizer.

I We reduce the problem to a constrained tilted-convex problem and
optimize it in an accelerated way. The problem is non-convex and
Euclidean. We provide some reductions in the Riemannian case:

µ-st. g-convex g-convex tilted-convex

preserves
acceleration
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Related Work

Method µ > 0 [κ def
= L/µ] µ = 0

AGD in Rn O(
√
κ log(1/ε)) O(

√
L/ε)

[ZS18] O(
√
κ log(1/ε)) (locally: starts O(κ−3/4)-close) −

[AS20] O∗(κ+
√
κ log(1/ε)) −

RGD+[ZS18] O∗(κ+
√
κ log(1/ε)) −

This work O∗(
√
κ log(1/ε)) Õ(

√
L/ε)

I [ZS18] Hongyi Zhang and Suvrit Sra. An Estimate Sequence for
Geodesically Convex Optimization. COLT 2018.

I [AS20] Kwangjun Ahn and Suvrit Sra. From Nesterov’s Estimate Sequence
to Riemannian Acceleration. COLT 2020.

Previous works: bounded curvature.
Our work: constant curvature.
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Tilted Convexity and Geodesic Maps

A function f : Rd → R is tilted-convex if ∃ γn, γp ∈ (0, 1] such that:

f (x̃) +
1
γn
〈∇f (x̃), ỹ − x̃〉 ≤ f (ỹ) if 〈∇f (x̃), ỹ − x̃〉 ≤ 0, (grey area)

f (x̃) + γp〈∇f (x̃), ỹ − x̃〉 ≤ f (ỹ) if 〈∇f (x̃), ỹ − x̃〉 ≥ 0.

Theorem
For closed convex Q ⊆ Rd , an L-smooth, and (γn, γp)-tilted-convex function
f : Rd → R and x∗ ∈ Q s.t. ∇f (x∗) = 0, we can find xt s.t. f (xt)− f (x∗) < ε

using Õ(
√
L/(γ2

nγpε)) queries to ∇f (·).
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Theorem
For closed convex Q ⊆ Rd , an L-smooth, and (γn, γp)-tilted-convex function
f : Rd → R and x∗ ∈ Q s.t. ∇f (x∗) = 0, we can find xt s.t. f (xt)− f (x∗) < ε

using Õ(
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The Approximate Duality Gap Technique (ADGT)

I We obtain continuous dynamics and use an implicit Euler discretization.
I By tilted convexity we have lower bounds that are looser by a factor of 1

γn
,

but they can be aggregated:

f (x̃∗) ≥
∫ t

t0
f (x̃τ )dατ

At
+

∫ t

t0
1
γn
〈∇f (x̃τ ), x̃∗ − x̃τ 〉dατ

At
.

We conclude the continuous trajectory of an accelerated method should follow
the differential equation:

˙̃zt = −
1
γn
α̇t∇f (x̃t); ˙̃xt =

1
γn
α̇t
∇ψ∗(z̃t)− x̃t

αt
; z̃t0 = ∇ψ∗(x̃t0), x̃t0 ∈ X.

Thus, we would like to have an approximate implementation of the implicit
method:

x̃i+1 = λi x̃i + (1− λi )∇ψ∗(z̃i −
ai+1

γn
∇f (x̃i+1)), λi ∈ [0, 1].
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Discretization

Use two fixed-point iterations that approximates implicit Euler, adjusted to deal
with tilted convexity:{

χ̃i = λi x̃i + (1− λi )∇ψ∗(z̃i ); ζ̃i = z̃i − ai+1
γn
∇f (χ̃i )

x̃i+1 = λi x̃i + (1− λi )∇ψ∗(ζ̃i ); z̃i+1 = z̃i − ai+1
γn
∇f (x̃i+1)

For a parameter λi ∈ [0, 1] depending on a value γ̂i ∈ [γp, 1/γn] that we require
to satisfy:

f (x̃i+1)− f (x̃i ) ≤ γ̂i 〈∇f (x̃i+1), x̃i+1 − x̃i 〉+ ε̂,

I Double dependency x̃i+1(γ̂i ), γ̂i (x̃i+1).
I We can solve it with a binary search.
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Conclusion

I Globally accelerated algorithm in (non-Euclidean) manifolds.

I We optimize both strongly g-convex problems as well as g-convex
problems.

I Fast constrained optimization of tilted-convex problems (Euclidean,
non-convex).

I Some other things:
I Some Riemannian optimization reductions.
I Tight lower bound on the condition number for functions defined in our

manifolds.
I Future directions:

I Generalization to bounded curvature.
I Improve the dependence on curvature bounds and on the diameter of the

feasible set.
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