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Riemannian Optimization
For a Riemannian manifold M:

in f(x).
R
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Riemannian Optimization

For a Riemannian manifold M:

in f(x).
R
» Spheres, hyperbolic spaces.
» SPD matrices.
» SO(n) (real orthogonal
matrices with det(A) = 1).

» Stiefel manifold Vj(R")
(ordered orthonormal basis
of a k-dim vector space).
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Riemannian Optimization

For a Riemannian manifold M:

in f(x).
R0

» Constrained — unconstrained.

» A function can be non-convex in the Euclidean case but geodesically convex
on a manifold with the right metric — Efficient optimization.
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Riemannian Optimization

For a Riemannian manifold M:

in f(x).
R0

» Constrained — unconstrained.

» A function can be non-convex in the Euclidean case but geodesically convex
on a manifold with the right metric — Efficient optimization.

Many first-order methods have analogous Riemannian counterparts:
» Deterministic (de Carvalho Bento et al., 2017; Zhang and Sra, 2016).

» Stochastic (Hosseini and Sra, 2017; Khuzani and Li, 2017; Tripuraneni
et al., 2018).

» Variance reduced (Sato et al., 2017, 2019; Zhang et al., 2016).
Adaptive (Kasai et al., 2019).

» Saddle-point escaping (Criscitiello and Boumal, 2019; Sun et al., 2019;
Zhang et al., 2018; Zhou et al., 2019; Criscitiello and Boumal, 2020).

> Projection free (Weber and Sra, 2017, 2019).
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Riemannian Optimization - Applications

> Low-rank matrix completion (Cambier and Absil, 2016; Heidel and
Schulz, 2018; Mishra and Sepulchre, 2014; Tan et al., 2014; Vandereycken,
2013).

» Dictionary learning (Cherian and Sra, 2017; Sun et al., 2017).

> Optimization under orthogonality constraints (Edelman et al., 1998)
> Some applications to RNNs (Lezcano-Casado and M-R., 2019).
> Robust covariance estimation in Gaussian distributions (Wiesel, 2012).
» Gaussian mixture models (Hosseini and Sra, 2015).
» Operator scaling (Allen-Zhu et al., 2018).
> Sparse principal component analysis (Jolliffe et al., 2003; Genicot et al.,
2015; Huang and Wei, 2019).
> Many more...
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Geodesic Convexity

Notation: Let M be a Riemannian manifold. Given x,y € M and v € T, M we
def def

use (v,y —x) = —(v,x —y) = (v, Exp; *(y))x.
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Geodesic Convexity

Notation: Let M be a Riemannian manifold. Given x,y € M and v € T, M we
def def

use (v,y —x) & —(v,x —y) & (v, Exp (y))x-

» u-strongly geodesic convexity of F : M — R:

F(y) > F(x) + (VF(x),y = x) + S d(x,y) for > 0,¥x,y € M.

» [-smoothness:

F(y) < F(x)+ (VF(x),y — x) + éd(x,y)z7 Vx,y € M.

If F satisfies the p-strong convexity inequality for ;1 = 0 we say F is geodesically
convex (g-convex).
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Nesterov's Accelerated Gradient Descent (AGD) Methods

» Optimal first-order method for the minimization of Euclidean convex (resp.

p-strongly convex) and L-smooth functions.

‘ w>0[r=L/y] ‘ pw=0

O(Vrlogl/e) | O(y/L/e)
O(klog1/e) O(L/e)

Accelerated Gradient Descent
Gradient Descent
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Nesterov's Accelerated Gradient Descent (AGD) Methods

» Optimal first-order method for the minimization of Euclidean convex (resp.
p-strongly convex) and L-smooth functions.

| p>0 = L/u] | p=0
Accelerated Gradient Descent | O(y/klog1/e) O(\/L/¢)
Gradient Descent O(rlogl/e) O(L/e)

IVl
2L

Accelerated Gradient Descent can be seen as a combination of Gradient Descent
and an online learning algorithm that have, respectively, progress and
instantaneous regret that are proportional to each other (proportional to
[V£(x)|” in the unconstrained case).
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Problem

Can a Riemannian first-order method enjoy the same rates as Nesterov's
accelerated gradient descent (AGD) does in the Euclidean space?

This work:

» Yes, for functions defined on manifolds of constant sectional curvature K,

up to log factors and constants depending on K and the initial distance R
to a minimizer.

» We reduce the problem to a constrained tilted-convex problem and
optimize it in an accelerated way. The problem is non-convex and
Euclidean. We provide some reductions in the Riemannian case:
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Problem

Can a Riemannian first-order method enjoy the same rates as Nesterov's
accelerated gradient descent (AGD) does in the Euclidean space?

This work:

» Yes, for functions defined on manifolds of constant sectional curvature K,
up to log factors and constants depending on K and the initial distance R
to a minimizer.

» We reduce the problem to a constrained tilted-convex problem and
optimize it in an accelerated way. The problem is non-convex and
Euclidean. We provide some reductions in the Riemannian case:

preserves

acceleration )
j-st. g-convex g-convex tilted-convex
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Related Work

’Method ‘,u>0[/<;d§L/u] ‘ =0 ‘
AGD in R" O(y/k log(1/¢)) O(y/L/¢)
[2S18] O(y/r log(1/¢)) (locally: starts O(x3/4)-close) -
[AS20] 0*(k + /i log(1/¢)) -
RGD+[ZS18] | O*(k + /x log(1/)) -

This work O*(/r log(1/¢)) O(\/L/e)

» [ZS18] Hongyi Zhang and Suvrit Sra. An Estimate Sequence for
Geodesically Convex Optimization. COLT 2018.

> [AS20] Kwangjun Ahn and Suvrit Sra. From Nesterov's Estimate Sequence
to Riemannian Acceleration. COLT 2020.

Previous works: bounded curvature.
Our work: constant curvature.
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Tilted Convexity and Geodesic Maps

A function f : R? — R is tilted-convex if 3 y,,7, € (0, 1] such that:
1
F(%) + —(VF(%),y = %) < f(y) if (VF(X),7 = %) <0, (grey area)

Tn
F(R) + 0 (VI(%),y = %) < f(y) if (VI(X),y - %) =0.

Br
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Tilted Convexity and Geodesic Maps

A function f : R? — R is tilted-convex if 3 y,,7, € (0, 1] such that:

(%) + i(Vf()?),)"/ —X) < f(y) if(VF(X),y—X)<0,(grey area)

Tn

F(X) +(VI(%), 7y — %) < f(y) if (VF(X),y— %)

> 0.

Br

Theorem

For closed convex @ C RY, an L-smooth, and (Vn, 7p)-tilted-convex function
f:R? = Rand x* € Qs.t. VF(x*) =0, we can find x; s.t. f(x;)— f(x*) <e
using O(\/L/(v2p€)) queries to V£ (-).

J
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The Approximate Duality Gap Technique (ADGT)

» We obtain continuous dynamics and use an implicit Euler discretization.

> By tilted convexity we have lower bounds that are looser by a factor of wi
but they can be aggregated:

&) > [y f(%)da, . . L(VF(%), % — % )da-
= A, A, ‘
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The Approximate Duality Gap Technique (ADGT)

» We obtain continuous dynamics and use an implicit Euler discretization.
> By tilted convexity we have lower bounds that are looser by a factor of wi
but they can be aggregated:
t ~ t 1 ~ ~x ~
F(2) > fto f(%:)da, e %<Vf(XT),X —XT>dOzT.
At At

We conclude the continuous trajectory of an accelerated method should follow
the differential equation:

o 1 . ~ o 1 . V’ * E 7)? ~ ~ -

Zy = ffothf(Xt); Xt = fozt%, Zty = V’Lb*(Xto),Xto e X.
In In e73

Thus, we would like to have an approximate implementation of the implicit

method:

Fir = N& 4+ (1= M)V (5 — 22V F(%01)), A e [0,1].

n
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Discretization

Use two fixed-point iterations that approximates implicit Euler, adjusted to deal
with tilted convexity:

G =A%+ (L= NV () (=5 - Z2VA(T)
Ziv1 = A%+ (L= N)VY*(G); 2 = 2 — 22V (K1)

Tn

For a parameter \; € [0, 1] depending on a value 9; € [y, 1/7x] that we require

to satisfy:
f(%it1) — F(%) < Ai(VF(Ki1), Kipr — &) + &,

» Double dependency %iy1(%i), §i(Xit1)-

» We can solve it with a binary search.
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Conclusion

v

Globally accelerated algorithm in (non-Euclidean) manifolds.

We optimize both strongly g-convex problems as well as g-convex
problems.

Fast constrained optimization of tilted-convex problems (Euclidean,
non-convex).
Some other things:
» Some Riemannian optimization reductions.
» Tight lower bound on the condition number for functions defined in our
manifolds.
Future directions:
» Generalization to bounded curvature.

» Improve the dependence on curvature bounds and on the diameter of the
feasible set.

11 | 11



