Global Riemannian Acceleration in Hyperbolic and Spherical Spaces

David Martínez-Rubio

Department of Computer Science - University of Oxford (Now at Zuse Institute Berlin)

For a Riemannian manifold \mathcal{M} :

 $\min_{x\in\mathcal{M}}f(x).$

For a Riemannian manifold \mathcal{M} :

 $\min_{x\in\mathcal{M}}f(x).$

- Spheres, hyperbolic spaces.
- SPD matrices.
- SO(n) (real orthogonal matrices with det(A) = 1).
- Stiefel manifold V_k(Rⁿ) (ordered orthonormal basis of a k-dim vector space).

For a Riemannian manifold \mathcal{M} :

 $\min_{x\in\mathcal{M}}f(x).$

- Constrained \rightarrow unconstrained.
- ► A function can be non-convex in the Euclidean case but geodesically convex on a manifold with the right metric → Efficient optimization.

For a Riemannian manifold \mathcal{M} :

 $\min_{x\in\mathcal{M}}f(x).$

► Constrained → unconstrained.

A function can be non-convex in the Euclidean case but geodesically convex on a manifold with the right metric → Efficient optimization.

Many first-order methods have analogous Riemannian counterparts:

- **Deterministic** (de Carvalho Bento et al., 2017; Zhang and Sra, 2016).
- Stochastic (Hosseini and Sra, 2017; Khuzani and Li, 2017; Tripuraneni et al., 2018).
- ▶ Variance reduced (Sato et al., 2017, 2019; Zhang et al., 2016).
- Adaptive (Kasai et al., 2019).
- Saddle-point escaping (Criscitiello and Boumal, 2019; Sun et al., 2019; Zhang et al., 2018; Zhou et al., 2019; Criscitiello and Boumal, 2020).
- Projection free (Weber and Sra, 2017, 2019).

Riemannian Optimization - Applications

- Low-rank matrix completion (Cambier and Absil, 2016; Heidel and Schulz, 2018; Mishra and Sepulchre, 2014; Tan et al., 2014; Vandereycken, 2013).
- Dictionary learning (Cherian and Sra, 2017; Sun et al., 2017).
- Optimization under orthogonality constraints (Edelman et al., 1998)
 - Some applications to RNNs (Lezcano-Casado and M-R., 2019).
- Robust covariance estimation in Gaussian distributions (Wiesel, 2012).
- **Gaussian mixture models** (Hosseini and Sra, 2015).
- **Operator scaling** (Allen-Zhu et al., 2018).
- Sparse principal component analysis (Jolliffe et al., 2003; Genicot et al., 2015; Huang and Wei, 2019).
- Many more...

Geodesic Convexity

Notation: Let \mathcal{M} be a Riemannian manifold. Given $x, y \in \mathcal{M}$ and $v \in T_x \mathcal{M}$ we use $\langle v, y - x \rangle \stackrel{\text{def}}{=} -\langle v, x - y \rangle \stackrel{\text{def}}{=} \langle v, \mathsf{Exp}_x^{-1}(y) \rangle_x$.

Geodesic Convexity

Notation: Let \mathcal{M} be a Riemannian manifold. Given $x, y \in \mathcal{M}$ and $v \in T_x \mathcal{M}$ we use $\langle v, y - x \rangle \stackrel{\text{def}}{=} -\langle v, x - y \rangle \stackrel{\text{def}}{=} \langle v, \mathsf{Exp}_x^{-1}(y) \rangle_x$.

• μ -strongly geodesic convexity of $F : \mathcal{M} \to \mathbb{R}$:

$$F(y) \geq F(x) + \langle \nabla F(x), y - x \rangle + \frac{\mu}{2} d(x, y)^2$$
, for $\mu > 0, \forall x, y \in \mathcal{M}$.

L-smoothness:

$$F(y) \leq F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2} d(x, y)^2, \quad \forall x, y \in \mathcal{M}.$$

If *F* satisfies the μ -strong convexity inequality for $\mu = 0$ we say *F* is geodesically convex (g-convex).

Nesterov's Accelerated Gradient Descent (AGD) Methods

Optimal first-order method for the minimization of Euclidean convex (resp. μ-strongly convex) and *L*-smooth functions.

	$\mu > 0 \; [\kappa \stackrel{\scriptscriptstyle m def}{=} L/\mu]$	$\mu = 0$
Accelerated Gradient Descent	$O(\sqrt{\kappa}\log 1/arepsilon)$	$O(\sqrt{L/\varepsilon})$
Gradient Descent	$O(\kappa \log 1/arepsilon)$	$O(L/\varepsilon)$

Nesterov's Accelerated Gradient Descent (AGD) Methods

Optimal first-order method for the minimization of Euclidean convex (resp. μ-strongly convex) and *L*-smooth functions.

Accelerated Gradient Descent can be seen as a combination of Gradient Descent and an online learning algorithm that have, respectively, progress and instantaneous regret that are proportional to each other (proportional to $\|\nabla f(x)\|^2$ in the unconstrained case).

Problem

Can a Riemannian first-order method enjoy the same rates as Nesterov's accelerated gradient descent (AGD) does in the Euclidean space?

This work:

- Yes, for functions defined on manifolds of constant sectional curvature K, up to log factors and constants depending on K and the initial distance R to a minimizer.
- We reduce the problem to a *constrained tilted-convex* problem and optimize it in an accelerated way. The problem is non-convex and Euclidean. We provide some reductions in the Riemannian case:

Problem

Can a Riemannian first-order method enjoy the same rates as Nesterov's accelerated gradient descent (AGD) does in the Euclidean space?

This work:

- Yes, for functions defined on manifolds of constant sectional curvature K, up to log factors and constants depending on K and the initial distance R to a minimizer.
- We reduce the problem to a *constrained tilted-convex* problem and optimize it in an accelerated way. The problem is non-convex and Euclidean. We provide some reductions in the Riemannian case:

Problem

Can a Riemannian first-order method enjoy the same rates as Nesterov's accelerated gradient descent (AGD) does in the Euclidean space?

This work:

- Yes, for functions defined on manifolds of constant sectional curvature K, up to log factors and constants depending on K and the initial distance R to a minimizer.
- We reduce the problem to a *constrained tilted-convex* problem and optimize it in an accelerated way. The problem is non-convex and Euclidean. We provide some reductions in the Riemannian case:

Method	$\mu > 0 \; [\kappa \stackrel{\text{\tiny def}}{=} L/\mu]$	$\mu = 0$
AGD in ℝ ⁿ	$O(\sqrt{\kappa}\log(1/arepsilon))$	$O(\sqrt{L/arepsilon})$
[ZS18]	$O(\sqrt{\kappa}\log(1/arepsilon))$ (locally: starts $O(\kappa^{-3/4})$ -close)	_
[AS20]	$O^*(\kappa+\sqrt{\kappa}\log(1/arepsilon))$	_
RGD+[ZS18]	$O^*(\kappa+\sqrt{\kappa}\log(1/arepsilon))$	—
This work	$O^*(\sqrt{\kappa}\log(1/arepsilon))$	$\widetilde{O}(\sqrt{L/arepsilon})$

- [ZS18] Hongyi Zhang and Suvrit Sra. An Estimate Sequence for Geodesically Convex Optimization. COLT 2018.
- [AS20] Kwangjun Ahn and Suvrit Sra. From Nesterov's Estimate Sequence to Riemannian Acceleration. COLT 2020.

Previous works: bounded curvature.

Our work: constant curvature.

Tilted Convexity and Geodesic Maps

A function $f : \mathbb{R}^d \to \mathbb{R}$ is tilted-convex if $\exists \gamma_n, \gamma_p \in (0, 1]$ such that: $\begin{aligned} f(\tilde{x}) + \frac{1}{\gamma_n} \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle &\leq f(\tilde{y}) & \text{if } \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle \leq 0, \text{(grey area)} \\ f(\tilde{x}) + \gamma_p \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle &\leq f(\tilde{y}) & \text{if } \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle \geq 0. \end{aligned}$

Tilted Convexity and Geodesic Maps

A function $f : \mathbb{R}^d \to \mathbb{R}$ is tilted-convex if $\exists \gamma_n, \gamma_p \in (0, 1]$ such that: $\begin{aligned} f(\tilde{x}) + \frac{1}{\gamma_n} \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle &\leq f(\tilde{y}) & \text{if } \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle \leq 0, \text{(grey area)} \\ f(\tilde{x}) + \gamma_p \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle &\leq f(\tilde{y}) & \text{if } \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle \geq 0. \end{aligned}$

Theorem

For closed convex $Q \subseteq \mathbb{R}^d$, an *L*-smooth, and (γ_n, γ_p) -tilted-convex function $f : \mathbb{R}^d \to \mathbb{R}$ and $x^* \in Q$ s.t. $\nabla f(x^*) = 0$, we can find x_t s.t. $f(x_t) - f(x^*) < \varepsilon$ using $\widetilde{O}(\sqrt{L/(\gamma_n^2 \gamma_p \varepsilon)})$ queries to $\nabla f(\cdot)$.

The Approximate Duality Gap Technique (ADGT)

- ▶ We obtain continuous dynamics and use an implicit Euler discretization.
- By tilted convexity we have lower bounds that are looser by a factor of ¹/_{γn}, but they can be aggregated:

$$f(\tilde{x}^*) \geq \frac{\int_{t_0}^t f(\tilde{x}_\tau) d\alpha_\tau}{A_t} + \frac{\int_{t_0}^t \frac{1}{\gamma_n} \langle \nabla f(\tilde{x}_\tau), \tilde{x}^* - \tilde{x}_\tau \rangle d\alpha_\tau}{A_t}.$$

The Approximate Duality Gap Technique (ADGT)

- ▶ We obtain continuous dynamics and use an implicit Euler discretization.
- By tilted convexity we have lower bounds that are looser by a factor of ¹/_{γn}, but they can be aggregated:

$$f(\tilde{x}^*) \geq \frac{\int_{t_0}^t f(\tilde{x}_{\tau}) d\alpha_{\tau}}{A_t} + \frac{\int_{t_0}^t \frac{1}{\gamma_n} \langle \nabla f(\tilde{x}_{\tau}), \tilde{x}^* - \tilde{x}_{\tau} \rangle d\alpha_{\tau}}{A_t}$$

We conclude the continuous trajectory of an accelerated method should follow the differential equation:

$$\dot{\tilde{z}}_t = -\frac{1}{\gamma_{\mathsf{n}}}\dot{\alpha}_t \nabla f(\tilde{x}_t); \quad \dot{\tilde{x}}_t = \frac{1}{\gamma_{\mathsf{n}}}\dot{\alpha}_t \frac{\nabla \psi^*(\tilde{z}_t) - \tilde{x}_t}{\alpha_t}; \quad \tilde{z}_{\mathsf{t_0}} = \nabla \psi^*(\tilde{x}_{\mathsf{t_0}}), \tilde{x}_{\mathsf{t_0}} \in \mathfrak{X}.$$

Thus, we would like to have an approximate implementation of the implicit method:

$$ilde{x}_{i+1} = \lambda_i ilde{x}_i + (1-\lambda_i)
abla \psi^* (ilde{z}_i - rac{a_{i+1}}{\gamma_n}
abla f(ilde{x}_{i+1})), \quad \lambda_i \in [0,1].$$

Discretization

Use two fixed-point iterations that approximates implicit Euler, adjusted to deal with tilted convexity:

$$\begin{cases} \tilde{\chi}_i = \lambda_i \tilde{x}_i + (1 - \lambda_i) \nabla \psi^*(\tilde{z}_i); & \tilde{\zeta}_i = \tilde{z}_i - \frac{a_{i+1}}{\gamma_n} \nabla f(\tilde{\chi}_i) \\ \tilde{x}_{i+1} = \lambda_i \tilde{x}_i + (1 - \lambda_i) \nabla \psi^*(\tilde{\zeta}_i); & \tilde{z}_{i+1} = \tilde{z}_i - \frac{a_{i+1}}{\gamma_n} \nabla f(\tilde{x}_{i+1}) \end{cases}$$

For a parameter $\lambda_i \in [0, 1]$ depending on a value $\hat{\gamma}_i \in [\gamma_p, 1/\gamma_n]$ that we require to satisfy:

$$f(ilde{x}_{i+1}) - f(ilde{x}_i) \leq \hat{\gamma}_i \langle
abla f(ilde{x}_{i+1}), ilde{x}_{i+1} - ilde{x}_i
angle + \hat{arepsilon},$$

- Double dependency $\tilde{x}_{i+1}(\hat{\gamma}_i)$, $\hat{\gamma}_i(\tilde{x}_{i+1})$.
- We can solve it with a binary search.

Conclusion

• Globally accelerated algorithm in (non-Euclidean) manifolds.

- We optimize both strongly g-convex problems as well as g-convex problems.
- Fast constrained optimization of tilted-convex problems (Euclidean, non-convex).

Some other things:

- Some Riemannian optimization reductions.
- Tight lower bound on the condition number for functions defined in our manifolds.

Future directions:

- Generalization to bounded curvature.
- Improve the dependence on curvature bounds and on the diameter of the feasible set.