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Abstract

Acceleration in optimization is a term that is generally applied to optimization al-

gorithms presenting some common methodology that enjoy convergence rates that

improve over other more simple algorithms for the same problem. For example,

Nesterov’s Accelerated Gradient Descent improves over the gradient descent method

for the optimization of smooth and convex functions. In this thesis, we investi-

gate the acceleration phenomenon and its applications for three previously studied

research questions in optimization and online learning : geodesically convex accel-

erated optimization in Riemannian manifolds, approximation of a proportional fair

solution under positive linear constraints, also known as the 1-fair packing problem,

and regret minimization in a decentralized cooperative stochastic multi-armed bandit

problem with no reward collisions. We improve over previously studied approaches

by using acceleration as a key element in all of our algorithms: we obtain an ac-

celerated method for some non-convex problems in the first case, we exploit a local

decrease condition of our problem in the second case, avoiding the use of poor and

non-global smoothness, and in the third problem, we design a solution for which we

can effectively apply an accelerated gossip protocol to spread and use information.

In particular, we provide an extensive overview of acceleration techniques that pro-

vide context for ours proofs. In Riemannian optimization, we design the first global

accelerated algorithm for the optimization of smooth functions that are geodesically

convex or geodesically strongly convex and that are defined in manifolds of constant

sectional curvature. We reduce these problems to a Euclidean non-convex problem

and design a global accelerated method, obtaining a solution with the same rates of

Accelerated Gradient Descent in the Euclidean space, up to logarithmic factors and

constants depending on the initial distance to an optimum and on the curvature.

We also provide some reductions. Regarding our fairness problem, we present a de-

terministic, accelerated, distributed and width-independent algorithm for the 1-fair

packing problem. We obtain a quadratic improvement in the number of iterations

and remove polylog(width) factors with respect to the previous best solution. In

our bandit problem, we design a decentralized upper confidence bound algorithm

to minimize the expected regret. It allows for the use of delayed and approximate

estimations of the arms’ means which we can obtain fast with an accelerated gossip

communication protocol. We provide theoretical and empirical comparisons showing

we obtain lower regret than previous state of the art.
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Chapter 1

Introduction

In recent years, there has been a surge in the study of first-order methods in optimization,

motivated by their applications to large scale problems in fields such as machine learning. An

old but effective method, is Gradient Descent (GD), stochastic or not. The deterministic method

dates back to at least 1847 (cf. Lemaréchal, 2012), and the stochastic one is from 1951 (Robbins

and Monro, 1951). Nowadays the method is still used in many applications. Gradient Descent

is an iterative local-search memoryless algorithm that essentially goes from one iterate to the

next one by following a local direction of descent with the aim of minimizing a function. In

many problem settings, there is a phenomenon which is that one can improve over GD or over

other natural simple algorithms for our setting, by using other iterative first-order methods.

Further, such solutions usually share some common methodology, like estimating a lower bound

on the objective by using the historic information received in previous iterations, in order to

obtain some kind of dual progress, or in order to estimate some other structural properties. Such

algorithms combine these estimations with other properties of the objective, such as smoothness

or finite-sum structure, in order to improve the rate of decrease of the optimality gap. In such

a case, one says the algorithm is accelerated. Despite there being no formal definition of what

acceleration is, the community agrees on the application of this term to many algorithms sharing

these design ideas and properties. We also note that, in fact, acceleration appears in higher

order methods as well (Monteiro and Svaiter, 2013; Gasnikov et al., 2019a; Bubeck, Jiang,

et al., 2019; Bullins and Peng, 2019; Carmon, Jambulapati, et al., 2020). The most prominent

example of an accelerated algorithm is Accelerated Gradient Descent (AGD), applying to smooth

convex functions (along with its sibling for smooth, strongly convex functions), which is an

algorithm that accelerates over GD and achieves optimality for the black-box optimization of

such functions via a first-order oracle (Nesterov, 1983; Nemirovski and Nesterov, 1985). There

Most of the notations in this thesis have a non-highlighted link to their definitions. For example, if you click
on any instance of 𝑒𝑖, you will jump to the place where it is defined as the 𝑖-th vector of the canonical base. Most
definitions are local to their sections and context. Excluding this footnote, this 𝑁 only appears in Chapter 4 and
links to its definition of the number of non-zeros of the matrix defined in the fairness packing problem there. And
this 𝑁 only appears in Chapter 5 and links to its definition as the number of nodes in a decentralized network.
This feature is best enjoyed with a reader that can go back to the place where a link was clicked after having
clicked on it. See this post for a list of common readers and shortcuts with such function.
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have been numerous efforts towards obtaining intuitive and generalizable schemes for the design

of accelerated methods, that often achieve optimality. In particular, the smooth convex case and

AGD have been subjected to scrutiny in the last fifteen years. Many works provide different

points of view and interpretations of this algorithm, some provide generalizations, and a few

obtain other different accelerated algorithms for this setting as a result of their more general

frameworks. Most existing acceleration techniques, applying to all sort of problems1, draw ideas

from the different interpretations of acceleration for the smooth convex case or from general

techniques that recover this case. Because of this, and because a key ingredient of the three

main results in this thesis is acceleration, we provide an overview of some acceleration techniques

and algorithms in Chapter 2, focusing on the optimization of a smooth convex function 𝑓 with

a first-order oracle. This overview provides context and intuition for subsequent chapters. We

refer to these chapters for slow-building introductions and definitions in these topics while we

reserve the rest of this introduction for the more experienced reader.

The key to acceleration is often the effective conjugation of a method that builds good

lower bounds on 𝑓 (it can be seen as a dual method in some settings, like in smooth convex

optimization), with some other properties the function satisfies, such as smoothness, finite-sum

structure, etc. An important technique to obtain good lower bound estimations consists of a

reduction to online learning. In our overview, we present part of this framework along with the

two main algorithmic schemes for solving online learning, namely the Follow the Regularized

Leader (FTRL) approach and Online Mirror Descent (OMD). We point out some relationships

between them when they are applied to convex optimization, and we provide intuition through

some different equivalent formulations. In particular we show how Mirror Descent (MD) creates

a looser regularized lower bound than FTRL. It is worth noticing that this does not mean that

the estimation on the optimum of 𝑓 is looser, since the looseness can come from reducing the

regularizer, and this case is beneficial. After that, we present some acceleration methods in the

smooth convex setting, with its technical details, comments on intuition, historical relationships

between works, and we point out some technical relationships between some different acceleration

methods. Given the intended scope of this dissertation, the acceleration overview is necessarily

incomplete. The literature is vast, but our aim with this presentation is to provide adequate

intuition for the proofs and technicalities we present in subsequent chapters, and to summarize

and connect several useful related optimization techniques. In Chapter 2, we will overview in

detail some of the algorithms mentioned below.

The Conjugate Gradient Descent (CGD) method and the use of Chebyshev polynomials are

the first accelerated algorithms in convex optimization. They apply to the optimization of a

quadratic. CGD and a particular analysis of it, was the inspiration for the first near-optimal
1Some first-order examples are: composite optimization with a smooth convex function plus a non-smooth

simple term, (Beck and Teboulle, 2009; Tseng, 2008), stochastic smooth convex optimization where the oracle
returns an estimate of the gradient (Xiao, 2010; Lan, 2012; Kavis et al., 2019; Joulani, Raj, et al., 2020), finite-sum
smooth convex optimization (Lin, Mairal, and Harchaoui, 2015; Allen-Zhu, 2017a), and finding stationary points
in functions with Lipschitz continuous gradient and Hessian (Carmon, Duchi, et al., 2017).
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first-order method for smooth convex optimization (Nemirovski and Yudin, 1983a). The method

is imbued with geometrical intuition, and is optimal only up to log factors because it required

an approximate plane search per iteration. It was later refined to a line search, by using an

algebraic trick, that detached in certain degree the geometrical point of view from the analysis.

Inspired by this last work, Nesterov (1983) designed the first fully accelerated algorithm that

obtained optimal rates up to constants, and provided some generalizations. An algebraic trick

was used to show that one can specify, without searches, a good enough point in the line in

which the previous method by Nemirovski and Yudin (1983a) was searching. The geometric

intuition is not present either in this solution, or at least not in a simple way. But later, the

same author developed a more intuitive analysis (Nesterov, 1998; Nesterov, 2005), the technique

of estimate sequences, which essentially uses an FTRL algorithm to estimate a lower bound on

the function and conjugates it with the smoothness property to rapidly decrease the optimality

gap. This point of view also implies that one can obtain acceleration by using a particular

point in the line where the method by Nemirovski and Yudin (1983a) searches, and such point

can be computed a priori and without searches. This method (Nesterov, 2005) was developed

before the FTRL algorithmic scheme was really formalized in its full generality in online learning

(Shalev-Shwartz and Singer, 2006; Shalev-Shwartz and Singer, 2007; Abernethy, Hazan, and

Rakhlin, 2008; Hazan and Kale, 2008), and one can consider this sequence-estimation technique

as the first algorithm using FTRL, also called Nesterov’s Mirror Descent for evident reasons. The

method presented in (Nesterov, 1998) is similar but it uses MD instead of FTRL. Tseng (2008)

provided a unified presentation of such techniques and produced some generalizations. Allen-Zhu

and Orecchia (2017) presented an intuitive view of the method that used MD as a method that

couples a GD iterate with the MD subalgorithm so that the progress of the former balances the

regret of the latter. Later, Diakonikolas and Orecchia (2019b); Diakonikolas and Orecchia (2018)

model the optimization algorithm as a continuous method that is naturally defined to reduce the

optimality gap. It results in a differential equation, that they can discretize to recover AGD if

one uses a forward Euler discretization along with a GD step to make the discretization error be

non-positive. The same differential equation was first obtained by Su, Boyd, and Candès (2016)

and also studied in (Krichene, Bayen, and Bartlett, 2015; Wibisono, Wilson, and Jordan, 2016).

But importantly Diakonikolas and Orecchia (2018) also provide a different and novel accelerated

method, named Accelerated eXtra Gradient Descent (AXGD), by discretizing the differential

equation with an implicit Euler discretization that uses one fixed point iteration to approximate

the implicit equation. Monteiro and Svaiter (2013) provide a general accelerated framework that

uses the proximal operator of 𝑓 or an inexact implementation of it. Several works used this

framework to obtain accelerated algorithms by using different inexactness measures, different

solutions of the subproblem, and different learning rates, cf. (Lin, Mairal, and Harchaoui, 2015,

Catalyst) and (Carmon, Jambulapati, et al., 2020) as examples. A common choice for solving

the proximal subproblem, that is strongly convex, are (possibly accelerated) first-order methods

for such setting.
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There are other techniques and points of view on acceleration for smooth convex functions,

that recover one of the previous algorithmic schemes but with different proofs, intuition and

different capabilities of generalizing to other settings (Bubeck, Lee, and Singh, 2015; Joulani,

Raj, et al., 2020; Wibisono, Wilson, and Jordan, 2016), to name a few. Notably, Kim and Fessler

(2016) found that a change on the learning rate of AGD decreases the worse-case guarantee by a

constant, and it was later shown that this is optimal, even considering constants (Drori, 2017).

Both the upper and lower bounds use an interesting technique that casts the design of the

algorithm with best worse-case guarantees within a family as an optimization problem, whose

dual provides a hard instance. The optimization problem is hard a priori but an SDP relaxation

allows for finding constant-matching upper and lower bounds on the worse-case performance with

respect to several metrics (Drori and Teboulle, 2014; Kim and Fessler, 2016; Taylor, Hendrickx,

and Glineur, 2017; Drori, 2017). Joulani, Raj, et al. (2020) show that applying an optimistic

anytime online learning algorithm2 with guess equal to the previously computed gradient recovers

AGD and the rates come simply from the online learning guarantee. A different line of work

(Scieur, d’Aspremont, and Bach, 2020; Scieur, Bach, and d’Aspremont, 2017; d’Aspremont,

Scieur, and Taylor, 2021), applying to smooth and strongly convex unconstrained optimization,

extrapolates a point from the sequence of iterates of any optimization algorithm in order to

provide improved solutions.

1.1 Main contributions

The accelerated techniques we overview in Chapter 2 are very useful tools in optimization.

The unconstrained black-box first-order smooth and convex case is essentially solved, but the

main capability of this understanding and of different points of view is on their applications to new

problems, by both finding problems for which we can use these fast methods as subalgorithms,

and also by applying these techniques to obtain acceleration in other problem settings. The

results in this dissertation take these two directions. In Chapter 5, we do the former and model

the decentralized solution for our bandit problem so that we can apply an accelerated gossip

communication protocol, a particular case of accelerated convex optimization. In Chapter 3 and

in Chapter 4 we do the latter and obtain new accelerated algorithms as part of our solutions,

with an accelerated algorithm for a class of constrained non-convex functions and another one

for a non-globally smooth problem presenting bad local smoothness but with some structure that

can be exploited, respectively. We focus on first-order methods. We note that in the problems in

Chapter 4 and Chapter 5, the use of first-order information only is essentially a requirement. This

is due to the distributed and decentralized models of computation that we use, respectively, and

that are motivated from their applications. In Chapter 3 we study the acceleration phenomenon

in first-order Riemannian optimization, motivated by the large-scale setting, cf. Section 3.1.
2Optimism refers to a technique that consists of taking a guess on the next loss in such a way that we receive

lower regret if the guess was close to the actual loss. An anytime algorithm is one whose last iterate enjoys
guarantees, as opposed to the mean of the iterates or other constructions.

4



Applications and generalizations of accelerated methods are very promising directions of

study, which have been the focus of the research in this thesis. The goal of Chapter 2 is to

overview some preexisting acceleration techniques in order to give intuition about them and to

provide context for our results in following chapters. We have curated, for our purposes, the

accelerated techniques that are presented. We added intuitive comments along the chapter and

included some relationship between methods that help with intuition and that we have not seen

in the literature, like the one in Section 2.6.1. In any case, we do not claim novelty on the content

of Chapter 2. Everything we added may be known, and most ideas are added in order to provide

intuition more than anything else.

Chapter 3 is based on the work (Martínez-Rubio, 2020), that I developed. Chapter 4 is

based on (Criado, Martínez-Rubio, and Pokutta, 2021). This work contains an algorithm for

optimizing a primal problem and an algorithm for the optimization of its dual problem. The

primal algorithm was primarily done by me and the majority of the dual solution was done by

Francisco Criado. We have not included the latter in this thesis. The research in this work was

supervised by Sebastian Pokutta. Chapter 5 is based on the work (Martínez-Rubio, Kanade,

and Rebeschini, 2019) done by me and supervised by Varun Kanade and Patrick Rebeschini.

The chapter contains some extensions as well. In the sequel, we summarize the main technical

contributions of our results in Chapters 3, 4 and 5. We refer to the corresponding chapters for

references of any statement made in this summary.

Riemannian optimization

In Chapter 3, we study Riemannian optimization, which is a field of optimization that con-

siders functions defined on Riemannian manifolds, a setting that has found many applications

in machine learning. In particular, we study the design of accelerated first-order optimization

algorithms that apply to smooth functions that are defined on Riemannian manifolds and that

are convex, (resp. strongly convex) when restricted to any geodesic, that is, they are geodesi-

cally convex (resp. strongly geodesically convex) functions. The two previous approaches that

provided provable guarantees before our work (Zhang and Sra, 2018; Ahn and Sra, 2020) could

essentially obtain the same rates as AGD, up to constants, for strongly geodesically-convex func-

tions defined on Riemannian manifolds of bounded sectional curvature provided that the initial

solution starts in a small neighborhood of the minimizer, that shrinks with the condition number.

We design an algorithm that optimizes over manifolds of constant sectional curvature, which is

a more restricted setting consisting of hyperbolic and spherical spaces, but that obtains globally

the same rates as AGD, up to constants and log factors. Besides, no previous algorithm achieved

acceleration in the geodesically-convex case only. The neighborhood of previous algorithms be-

comes a single point in such a case, since it is the limit of the condition number tending to

infinity. The constant sectional curvature is an important case since many properties and algo-

rithms usually rely on the constant curvature case and use comparison geometry theorems to

obtain the bounded curvature results as an interpolation between the properties and algorithms

5



of the two extremal constant curvature cases. Extending our framework to bounded curvature

manifolds is a future direction of research. Studying if the constants appearing in the rates with

respect to the initial distance to a minimizer are necessary for full global acceleration is also of

interest and a future direction of research. Here, by full acceleration we refer to achieving the

same rates as AGD with respect to the desired accuracy, to the smoothness constant, and if it

applies, to the strong convexity constant. We also provide reductions from optimization methods

for smooth geodesically-convex functions to smooth strongly geodesically-convex functions and

vice versa. They are adaptations of Euclidean reductions. In particular reducing to strongly

geodesically-convex does not incur in extra log factors. Some of our changes of the latter reduc-

tion could be used in the optimal Euclidean reduction by Allen-Zhu and Hazan (2016) to slightly

reduce their constants.

Our solution can be seen from two points of view. One can see the algorithm as performing

FTRL on surrogate losses whose regularized sum can be easily optimized, and then conjugating

the corresponding lower bound with a gradient descent step in order to achieve acceleration. As

usual, the losses come from gradients ∇𝑓(𝑥𝑖), and in this case they define simple lower bounds

on the function (e.g. affine in the geodesically-convex case) but only when viewed from the

tangent space of 𝑥𝑖 via the inverse exponential map, respectively. The surrogates consist of

bounds that are looser by a constant factor and that are simple (e.g. affine) and all of them

are defined on the same tangent space, which allows for the global optimization subproblem

of FTRL. The second point of view regards the optimization as first performing a reduction

to a Euclidean constrained non-convex problem that we optimize in an accelerated way. The

accelerated optimization presents some problems for the usual approaches: On the one hand we

need the constraints to guarantee bounded deformation due to the geometry but on the other

hand, since the surrogates cause the regret to be a factor greater than in the convex case, the

gradient step used to balance the regret would want to use a greater learning rate by the same

factor, landing at a point that is not guaranteed to be inside the constraints and not allowing

for constrained optimization. We find that by using a backward Euler discretization of the

continuous accelerated dynamics, similarly to AXGD, and making use of a binary search per

iteration, we can optimize this constrained non-convex problem in an accelerated way.

Proportional fairness

In Chapter 4, we study the proportional fair allocation problem under positive linear con-

straints, i.e.,

max

{︃
𝑛∑︁
𝑖=1

log(𝑥𝑖) : 𝐴𝑥 ≤ 1𝑚, 𝑥 ∈ R𝑛
≥0, 𝐴 ∈ℳ𝑚×𝑛(R≥0)

}︃
.

Proportional fairness is a fairness scheme for resource allocation which considers something is

unfair if a small transfer of resources between some pair of players results in a proportional in-

crease in the utility of one player larger than the proportional decrease in the utility of the other

player. The fair allocation can be computed as the solution of max{
∑︀

𝑖 log(𝑥𝑖)}. This allocation
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is studied and applied in several fields such as rate control of networks, resource allocation in

clusters, game theory and economic theory and it is the unique allocation satisfying a natural

set of fairness axioms (Bertsimas, Farias, and Trichakis, 2011; Lan et al., 2010). Many of these

applications naturally require to obtain the proportional fair solution under positive linear con-

straints. Our objective is part of a class of well-known resource allocation schemes, known as

𝛼-fair solutions for which linear programming (LP) corresponds to 𝛼 = 0 (no fairness at all, it

just maximizes utility) and proportional fairness corresponds to 𝛼 = 1. Because of this reason,

the problem is also known as the 1-fair packing problem. We design an algorithm that works

in a standard distributed model of computation, which is a requirement for some applications.

We generalize ideas from one of the currently fastest solutions for large scale packing linear

programming (Allen-Zhu and Orecchia, 2019), like taking a non-standard instance of mirror

descent by using truncated gradients as losses and linearly coupling it with a gradient descent

condition. This would be applied to a regularized objective in order to obtain an accelerated

algorithm. This objective is still non-globally smooth and presents bad local smoothness, but

presents some smoothness-like structure that can be exploited. This allows us to prove conver-

gence, in ̃︀𝑂(𝑛/𝜀) iterations, to a solution with additive error 𝜀 (note packing LP solutions are

designed for guaranteeing multiplicative errors). The previous best solution (Diakonikolas, Fazel,

and Orecchia, 2020) did not achieve acceleration and converged with rate ̃︀𝑂(𝑛2/𝜀2), where ̃︀𝑂(·)
hides logarithmic factors on 𝑚,𝑛, 𝜀 and, in the latter case, on the width of the matrix as well.

The width of the matrix 𝐴, is defined as max𝑖𝑗 𝐴𝑖𝑗
min𝑖𝑗{𝐴𝑖𝑗 :𝐴𝑖𝑗 ̸=0} and can be exponential on the input.

Some previous algorithms depended on the width, yielding non-polynomial algorithms. Some

other algorithms are polynomial (Marašević, Stein, and Zussman, 2016; Diakonikolas, Fazel, and

Orecchia, 2020) and present a logarithmic dependency on the width in the convergence rates. We

note our convergence rate does not depend on the width at all. Also, remarkably, our algorithm

is deterministic and enjoys deterministic guarantees, as opposed to the solutions in packing LP

in (Allen-Zhu and Orecchia, 2019).

Decentralized cooperative bandits

Finally, in Chapter 5 we study a decentralized cooperative stochastic multi-armed bandit

problem. That is, we have 𝐾 actions and 𝑁 agents in a network and we play a repeated game

in which at every iteration, each agent chooses an action and receives a reward that is sampled

from a stationary distribution that depends on the action. In our problem, the samples are

independent across agents and iterations, as opposed to models that assume that there is some

kind of reward collision if two agents choose the same action. Then, agents can synchronously

communicate values to their neighbors. After that, the next iteration starts. The aim is to

minimize the expected regret after 𝑇 iterations, i.e., the difference between what we could have

obtained if all agents had always chosen an action with optimal mean reward compared to what

we obtain with our policy, in expectation. The agents run the same decentralized algorithm we
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decide to implement and in particular they have little access to global quantities. They cooperate

to minimize the expected regret.

Bandit algorithms are used in many decision tasks such as in recommendation algorithms,

and anything going beyond A/B testing that needs to consider a large number of options. Some

applications require to be run on decentralized networks and in some other cases we may decide

to use a decentralized algorithm in order to obtain robustness to changes in the network or

failures in communication links, cf. Chapter 5.

In our solution, we use a classical decentralized communication protocol, namely a gossip

algorithm, in order to obtain an approximate average of the rewards’ estimations from each

agent and to approximate the number of times each action was chosen. Then, we generalize

the classical Upper Confidence Bound (UCB) algorithm, that is an algorithm that applies to

the stochastic centralized multi-armed bandit problem. Our generalization analyzes the regret

incurred by working with approximate and delayed mean rewards and number of actions chosen.

Our problem was previously studied by (Landgren, Srivastava, and Leonard, 2016; Landgren,

Srivastava, and Leonard, 2019a) and they used another variant of UCB with a natural approach

for approximating the same quantities: a running unaccelerated gossip protocol, meaning that

the algorithms distribute and use the information as soon as it is available. This approach

obtains worse estimations due to newly received information that has not had time to average

in the network. We introduce a delay in the use of the mean rewards and do not use very recent

information with the aim of trading off some delay for better approximations. The delay does

not only help in obtaining better estimators but it allows us to average information in batches,

providing more flexibility in the gossip protocol. In particular, in this case we can apply an

accelerated gossip protocol that reduces the time required to obtain a good enough approximate

average, which further decreases the regret.

We show our regret bounds improve over those of previous works, we provide examples of net-

works that exemplify the difference between the regret bounds, and we also perform experiments

demonstrating that our algorithms perform better empirically.
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Chapter 2

Acceleration in Optimization Methods

In this section, we provide a non-exhaustive overview of some acceleration methods and

techniques. This provides context for the rest of the chapters. We sometimes go over different

points of view of the same Accelerated Gradient Descent (AGD) algorithm for smooth convex

functions. We also explain some of the history of the acceleration phenomenon. These methods,

except for the first one we explain, enjoy a rate of convergence of 𝑂(
√︀
𝐿𝑅/𝜀), matching the

known lower bound up to constants. We are denoting the smoothness constant by 𝐿, 𝑅 denotes

the initial distance to a minimizer and 𝜀 represents the target accuracy.

The first lower bounds for first-order smooth convex optimization of a smooth convex function

𝑓 were given in (Nemirovski and Yudin, 1983a) for the natural class of algorithms in which the

next iterate is 𝑥𝑘 ∈ 𝑥0 + span{∇𝑓(𝑥0), . . . ,∇𝑓(𝑥𝑘−1)} and the authors show that any method

of the class must query a gradient oracle Ω(
√︀
𝐿𝑅/𝜀) times in order to achieve a point with

𝜀 accuracy. Drori (2017) improves this lower bound by constants, showing that the optimized

gradient method of Kim and Fessler (2016) is worse-case optimal in unconstrained smooth convex

optimization, even considering constants. These lower bounds assume the dimension is greater

than the number of iterations. Arjevani and Shamir (2016) proved a dimension-independent

lower bound of ̃︀Ω(√︀𝐿𝑅/𝜀) for a rich family of algorithms that satisfy a stationarity condition

on the update step (that includes fixed-step AGD, the heavy-ball method, coordinate descent,

quasi-Newton methods, ellipsoid method, SVRG, SAGA, among many others). Here ̃︀Ω(·) hides

logarithmic factors. These lower bounds assume a black-box access to the computation of the

gradient.

Arguments involving potential functions are useful for proving rates of convergence for these

kinds of algorithms. We will interpret each of these algorithms’ steps as online algorithms mixed

with a GD step whose progress balances the instantaneous regret. Further, we will interpret these

analyses as coming naturally from a definition of duality gap and the imposition on decreasing

it at a certain rate.
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2.1 Preliminaries

We start by defining a few basic convex optimization notions and some useful properties. We

will build the rest of the chapter on these notions.

Definition 2.1.1 (Convex set). A set 𝒳 ⊆ R𝑛 is convex if any segment with endpoints in the

set is contained in the set. That is, for any 𝑥, 𝑦 ∈ 𝒳 and 𝜆 ∈ [0, 1] we have 𝜆𝑥+ (1− 𝜆)𝑦 ∈ 𝒳 .

Definition 2.1.2 (Convex function). Let 𝒳 ⊆ R𝑛 be a convex set. A function 𝑓 : 𝒳 → R is

convex if its epigraph {(𝑥, 𝑦) : 𝑥 ∈ 𝒳 , 𝑦 ≥ 𝑓(𝑥)} is convex. An equivalent condition is:

𝑓(𝜆𝑥+ (1− 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑦) for 𝑥, 𝑦 ∈ 𝒳 𝜆 ∈ [0, 1].

Note that we require 𝒳 be convex because otherwise 𝑓 cannot be convex according to the

first definition. The second definition does not even make sense if 𝒳 is not convex. If 𝑓 is

differentiable, convexity is equivalent to 𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ for all 𝑥, 𝑦 ∈ 𝒳 and

if 𝑓 is twice differentiable convexity is also equivalent to having positive semidefinite Hessian

everywhere, that is, ∇2𝑓(𝑥) < 0 for all 𝑥 ∈ 𝒳 .

Definition 2.1.3 (Subdifferential). For a convex function 𝑓 : 𝒳 ⊆ R𝑛 → R, the set of

subdifferentials at a point 𝑥 ∈ 𝒳 , denoted by 𝜕𝑓(𝑥), is the set of vectors 𝑔 ∈ R𝑛 that satisfy

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨𝑔, 𝑦 − 𝑥⟩ for all 𝑦 ∈ 𝒳 .

We note that if 𝑓 is differentiable and 𝑥 ∈ int(𝒳 ) then 𝜕𝑓(𝑥) = {∇𝑓(𝑥)}.

Definition 2.1.4 (Smoothness and strong convexity). Let 𝑓 : 𝒳 → R be a convex and

differentiable function. We say 𝑓 is 𝐿-smooth and, respectively, 𝜇-strongly convex with respect to

‖ · ‖ if for 𝐿 ≥ 𝜇 > 0 we have

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 𝐿

2
‖𝑥− 𝑦‖2, resp. 𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 𝜇

2
‖𝑥− 𝑦‖2,

where ‖ · ‖ is an arbitrary norm.

In this text we assume it is ‖·‖ = ‖·‖2 if the norm is not specified. If we use the 2-norm and 𝑓 is

twice differentiable these two conditions are equivalent to 𝜇𝐼 4 ∇2𝑓(𝑥) 4 𝐿𝐼 for all 𝑥 ∈ 𝒳 . Under

convexity, smoothness is also equivalent to gradient Lipschitzness: ‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥−𝑦‖
but we note that if 𝑓 is not convex then gradient Lipschitzness implies smoothness but not the

other way around. One can prove that the bounds on eigenvalues of the Hessian imply the

inequalities in the definition by taking a second order Taylor approximation and bounding the

Lagrange remainder. Even if the function is not twice differentiable this fact provides a good way

to recall the definition of the inequalities. Note that if 𝜇 = 0 we would have regular convexity.

Notation. From now on in this chapter, we denote by 𝒳 ⊆ R𝑛 a closed and convex set.

If we say a function 𝑔 : 𝒳 → R is a differentiable function we mean there is a differentiable

extension ̂︀𝑔 : 𝑋 → R of 𝑔 for a convex open set 𝑋 such that 𝒳 ⊆ 𝑋 and we fix an arbitrary

extension so we can define ∇𝑔(𝑥) def
= ∇̂︀𝑔(𝑥) for 𝑥 ̸∈ int(𝒳 ). For a number 𝑘 ∈ Z+, we use the

notation [𝑘]
def
= {1, 2, . . . , 𝑘}. We denote by 𝑇 the number of steps our algorithms run for. We
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use ‖·‖* for the dual norm of ‖·‖, that is, ‖𝑣‖*
def
= max‖𝑤‖≤1⟨𝑣, 𝑤⟩. We denote by 𝑓 an 𝐿-smooth

convex function with at least one minimizer 𝑥*. Our aim in convex optimization is to find an

𝜀-minimizer of 𝑓 , which is a point 𝑥 that satisfies 𝑓(𝑥)− 𝑓(𝑥*) ≤ 𝜀. We usually denote strongly

convex regularizers by 𝜓.

We define the Fenchel dual, which is a very important dual of a function in convex optimiza-

tion.

Definition 2.1.5 (Fenchel dual). For a function 𝜓 : 𝒳 ⊆ R𝑛 → R we define 𝜓* : R𝑛 → R as

𝜓*(𝑧) = max
𝑥∈𝒳
{⟨𝑧, 𝑥⟩ − 𝜓(𝑥)} = −min

𝑥∈𝒳
{−⟨𝑧, 𝑥⟩+ 𝜓(𝑥)}.

We call this function the Fenchel dual of 𝜓 or its convex conjugate.

Fact 2.1.6. Let 𝜓 : 𝒳 → R be a differentiable strongly-convex function. Then

∇𝜓*(𝑧) = argmin
𝑥∈𝒳

{⟨−𝑧, 𝑥⟩+ 𝜓(𝑥)}.

See (Bertsekas, Nedic, and Ozdaglar, 2003) for a proof. We call 𝒟 def
= ∇𝜓(𝒳 ) the dual

space of 𝒳 via 𝜓. From the first-order optimality condition of Fact 2.1.6 we can deduce that

∇𝜓* ∘ ∇𝜓 = Id𝒳 . On the other hand it holds that ∇𝜓(∇𝜓*(𝑧)) = 𝑧 if 𝑧 ∈ 𝒟 but this is not

the case if 𝑧 ̸∈ 𝒟, since in particular ∇𝜓(∇𝜓*(𝑧)) ∈ 𝒟 by definition. Consequently, we have

∇𝜓 ∘ ∇𝜓* = Id if and only if ∇𝜓(𝒳 ) = R𝑛. This happens if 𝒳 = R𝑛 or more in general, if we

allow 𝒳 not to be closed we can have this property if lim𝑥→𝜕𝒳 ‖∇𝜓(𝑥)‖2 = +∞.

Oftentimes in optimization we regularize the objective. This means, we add a function 𝜓 with

the aim of biasing an algorithm to satisfy some particular properties. In first-order methods,

it is common to regularize the objective with a differentiable and strongly convex function in

order to make the minimizer closer to argmin{𝜓(𝑥)}, similarly to what we prove in Lemma 3.3.5.

This regularization is also useful if we are optimizing related subproblems and want to give some

stability to their solutions. We will make this fact precise in Section 2.2. Further, regularization

will not hurt the optimization process much if the penalty at a minimizer of the original function,

𝑥*, is of the order of the accuracy 𝜀 we want to achieve, i.e., if 𝜓(𝑥*) − min𝜓(𝑥) ≤ 𝑂(𝜀).

Sometimes we want to dynamically change the point of attraction. That is, we would like

to change where we are biasing our iterates toward, maybe because with time we gain better

understanding of around where a solution could be. Sometimes we have a regularizer that satisfies

good properties, and we would like to have its optimizer at a different point while keeping other

properties it may have. For both of these tasks, Bregman divergences are a useful tool, specially

if the regularizers are strongly convex.

The idea is very simple. Suppose we want the minimizer of our regularizer 𝜓 to be at a point

𝑦. Then, we can simply use 𝜓(𝑥)−⟨∇𝜓(𝑦), 𝑥⟩ in order to have 0 gradient at 𝑦. Further, 𝑦 will be

the only such point if 𝜓 is strongly convex. Also, adding a constant to the regularizer usually does

not make a difference to the algorithm because we are interested in where the optimizer of the

subproblems is. That is, the penalties the regularizer produces, are relative to the minimum of the
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regularizer, like 𝜓(𝑥*)−min𝜓(𝑥) above. So we can make the regularizer at 𝑦 be 0 for simplicity.

In this way, we end up with the definition of Bregman divergence 𝐷𝜓(𝑥, 𝑦) as this regularizer,

with 𝑦 as base point. We present the formal definition and some useful properties of Bregman

divergences below. When using Bregman divergences with Mirror Descent (cf. Section 2.2.2)

we will have errors depending on them. In order to provide more intuition about this, we will

present, in Section 2.6, an equivalent and alternative point of view that shows that these errors

can be computed as discretization errors of a continuous method, where one has to integrate

property 3 below. This intuitively means that this is the error incurred by changing the dual

point since, recall, ∇𝜓(·) maps a point to the dual space.

Definition 2.1.7 (Bregman Divergence). Let 𝜓 : 𝒳 ⊆ R𝑛 → R be a differentiable 𝜎-strongly

convex function with respect to an arbitrary norm ‖ · ‖. We define the Bregman divergence as

𝐷𝜓(𝑥, 𝑦)
def
= 𝜓(𝑥)− 𝜓(𝑦)− ⟨∇𝜓(𝑦), 𝑥− 𝑦⟩ for 𝑥, 𝑦 ∈ 𝒳 .

We list and prove some useful properties of the Bregman divergence.

Lemma 2.1.8. The Bregman divergence satisfies the following properties:

1. Suppose 𝜓 is twice differentiable. Then 𝐷𝜓(𝑥, 𝑦) =
1
2(𝑥− 𝑦)

𝑇∇2𝜓(𝑧)(𝑥− 𝑦) for a point 𝑧

in the segment between 𝑥 and 𝑦.

2. 𝐷𝜓(𝑥, 𝑦) ≥ 𝜎
2 ‖𝑥− 𝑦‖

2 ≥ 0 and 𝐷𝜓(𝑥, 𝑥) = 0.

3. ∇𝑥𝐷𝜓(𝑥, 𝑦) = ∇𝜓(𝑥)−∇𝜓(𝑦).

4. 𝐷𝜓(·, 𝑦) is strongly convex and its Bregman divergence 𝐷𝐷𝜓(·,𝑦)(·, 𝑦) is itself. More gener-

ally: 𝐷𝐷𝜓(·,𝑧)(·, 𝑦) ≡ 𝐷𝜓(·, 𝑦) for all 𝑦, 𝑧.

5. 𝐷𝜓(𝑥, 𝑦) = 𝐷𝜓(𝑧, 𝑦) +𝐷𝜓(𝑥, 𝑧) + ⟨∇𝜓(𝑧)−∇𝜓(𝑦), 𝑥− 𝑧⟩, for all 𝑥, 𝑦, 𝑧 ∈ int(𝒳 ). This is

sometimes called the triangle equality of Bregman divergences.

6. 𝐷𝜓*(𝑥, 𝑦) ≥ 𝐷𝜓(∇𝜓*(𝑦),∇𝜓*(𝑥)). When ∇𝜓(∇𝜓*(𝑥)) = 𝑥, we have equality.

Proof

1. It is a consequence of Taylor’s theorem. This fact provides the intuition about the Bregman

divergence as a local norm, which is a property that can be exploited in online learning.

2. The first part follows straightforwardly from the definition of the strong convexity of 𝜓 and

the second part follows from the definition of Bregman divergence.

3. This follows by differentiating the definition of Bregman divergence:

𝜓(𝑥)− 𝜓(𝑦)− ⟨∇𝜓(𝑦), 𝑥− 𝑦⟩.
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4. 𝐷𝜓(·, 𝑦) is strongly convex because it is the sum of the strongly convex function 𝜓(·) plus

a linear term. By using part 3., we have

𝐷𝐷𝜓(·,𝑧)(𝑥, 𝑦) = 𝐷𝜓(𝑥, 𝑧)−𝐷𝜓(𝑦, 𝑧)− ⟨∇𝑤𝐷𝜓(𝑤, 𝑧)|𝑤=𝑦 , 𝑥− 𝑦⟩

= (𝜓(𝑥)− 𝜓(𝑧)− ⟨∇𝜓(𝑧), 𝑥− 𝑧⟩)− (𝜓(𝑦)− 𝜓(𝑧)− ⟨∇𝜓(𝑧), 𝑦 − 𝑧⟩)

− ⟨∇𝜓(𝑦)−∇𝜓(𝑧), 𝑥− 𝑦⟩

= 𝜓(𝑥)− 𝜓(𝑦)− ⟨∇𝜓(𝑧), 𝑥− 𝑧 − 𝑦 + 𝑧⟩ − ⟨∇𝜓(𝑦)−∇𝜓(𝑧), 𝑥− 𝑦⟩

= 𝐷𝜓(𝑥, 𝑦).

This result should be intuitive given the introduction we made of Bregman divergences.

Since the zeroth order information is always set to 0 and since for strongly convex 𝜓 there

is a unique way of changing the first-order information so the optimizer is at 𝑦, it should

be intuitive that taking the Bregman divergence with respect to 𝐷𝜓(·, 𝑧) for any 𝑧 yields

the same result as taking the Bregman divergence with respect to 𝜓, because it is the same

function but with different zeroth and first-order information.

5. Expanding the definitions we obtain:

𝐷𝜓(𝑧, 𝑦) +𝐷𝜓(𝑥, 𝑧) + ⟨∇𝜓(𝑧)−∇𝜓(𝑦), 𝑥− 𝑧⟩

= (𝜓(𝑧)− 𝜓(𝑦)− ⟨∇𝜓(𝑦), 𝑧 − 𝑦⟩)

+ (𝜓(𝑥)− 𝜓(𝑧)− ⟨∇𝜓(𝑧), 𝑥− 𝑧⟩) + ⟨∇𝜓(𝑧)−∇𝜓(𝑦), 𝑥− 𝑧⟩

= 𝜓(𝑥)− 𝜓(𝑦)− ⟨∇𝜓(𝑦), 𝑧 − 𝑦⟩+ ⟨−∇𝜓(𝑦), 𝑥− 𝑧⟩ = 𝐷𝜓(𝑥, 𝑦).

6.

𝐷𝜓*(𝑥, 𝑦) = 𝜓*(𝑥)− 𝜓*(𝑦)− ⟨∇𝜓*(𝑦), 𝑥− 𝑦⟩
1
= 𝜓(∇𝜓*(𝑦))− 𝜓(∇𝜓*(𝑥))− ⟨𝑥,∇𝜓*(𝑦)−∇𝜓*(𝑥)⟩

= 𝐷𝜓(∇𝜓*(𝑦),∇𝜓*(𝑥)) + ⟨∇𝜓(∇𝜓*(𝑥))− 𝑥,∇𝜓*(𝑦)−∇𝜓*(𝑥)⟩
2
≥ 𝐷𝜓(∇𝜓*(𝑦),∇𝜓*(𝑥))

In 1 , we used 𝜓*(𝑥) = ⟨∇𝜓*(𝑥), 𝑥⟩ − 𝜓(∇𝜓*(𝑥)) ∀𝑥 which holds by Fact 2.1.6. In 2

we used first-order optimality condition of the Fenchel dual definition at ∇𝜓*(𝑦) ∈ 𝒳 ,

which is also derived from Fact 2.1.6. That is, the gradient of the minimization problem

at the optimum ∇𝜓*(𝑥) is ∇𝜓(∇𝜓*(𝑥))−𝑥 and since the problem is of minimization, this

gradient non-negatively correlates with the segment 𝑧−∇𝜓*(𝑥) for any 𝑧 ∈ 𝒳 . The second

part of 6. is trivial.

We now proceed to overview some online learning algorithms which are building blocks of

accelerated methods.
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2.2 Online learning: FTRL and Mirror Descent

An online learning algorithm in the full information setting is an algorithm that plays a

repeated game of the following form. Given a set 𝒳 ⊆ R𝑛, and round 𝑡 ∈ [𝑇 ], an adversary

chooses a loss function ℓ𝑡 : 𝒳 → R, that can depend on the algorithm and previous decisions

taken by it. But it cannot predict the outcome of a randomized decision.1 After the adversary

selects the loss ℓ𝑡, the algorithm chooses a prediction point 𝑥𝑡 ∈ 𝒳 , observes the loss function

ℓ𝑡 and pays the loss ℓ𝑡(𝑥𝑡). The aim is to minimize the regret, defined as the difference between

our losses and the loss we could have obtained with a fixed action, had we known the sequence

of loss functions in advance:

𝑅𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡(𝑥𝑡)−min
𝑢∈𝒳

𝑇∑︁
𝑡=1

ℓ𝑡(𝑢), (2.2.1)

A guarantee would bound the regret regardless of the choices made by the adversary. Even though

the sequence of losses can be chosen against our algorithms, the optimizers of min𝑢
∑︀𝑘

𝑡=1 ℓ𝑡 and

min𝑢
∑︀𝑘+1

𝑡=1 ℓ𝑡 cannot differ arbitrarily if we make some assumptions on ℓ𝑡, and algorithms will

exploit this fact in order to obtain reasonable regret.

The full information setting is a very general problem, but we note there are many other

variants of this game. Another example is the bandit setting, in which one only observes the

value ℓ𝑡(𝑥𝑡) as opposed to the function ℓ𝑡. For the ideas we convey in this section, the full

information setting with convex losses ℓ𝑡 and closed convex sets 𝒳 will be enough. But in fact,

in Chapter 5, we will study an online learning problem in the bandit setting in which the losses2

will be sampled from unknown distributions instead of being picked by an adversary, which is

another online learning problem.

Online learning is a useful tool for optimization. In particular, for convex optimization we can

reduce many problems to online learning. For instance, if we have a convex function 𝑓 : 𝒳 → R

we want to optimize via a first-order oracle and a deterministic algorithm, we can define an

online learning game in which the adversary chooses linear losses ℓ𝑡(·) = ⟨∇𝑓(𝑥𝑡), ·⟩3. Suppose

𝑓 has at least one minimizer 𝑥* ∈ 𝒳 and define �̄� def
= 1

𝑇

∑︀𝑇
𝑡=1 𝑥𝑡 ∈ 𝒳 . Then, we have

𝑓(�̄�)− 𝑓(𝑥*)
1
≤ 1

𝑇

𝑇∑︁
𝑡=1

(𝑓(𝑥𝑡)− 𝑓(𝑥*))
2
≤ 1

𝑇

𝑇∑︁
𝑡=1

⟨∇𝑓(𝑥𝑡), 𝑥𝑡 − 𝑥*⟩ ≤
𝑅𝑇
𝑇
, (2.2.2)

where 1 uses Jensen’s inequality and 2 uses the definition of convexity. More generally, we

could have also defined losses ℓ𝑡(·) = 𝑎𝑡⟨∇𝑓(𝑥𝑡), ·⟩ and �̄�𝑎
def
=

∑︀𝑇
𝑡=1 𝑎𝑡𝑥𝑡∑︀𝑇
𝑡=1 𝑎𝑡

∈ 𝒳 , for 𝑎𝑡 > 0, to

conclude 𝑓(�̄�𝑎) − 𝑓(𝑥*) ≤ 𝑅𝑇 /(
∑︀𝑇

𝑡=1 𝑎𝑡). In even more generality, if we have functions ℓ𝑡 that

1In any case, we limit the technical exposition in this section to deterministic algorithms and will only comment
on the intuition about why one can generalize some of these ideas to algorithms that use randomness or that
access a function through a stochastic oracle.

2Note that, following the standard approach, we use rewards instead of losses for the setting in Chapter 5.
3Assume for simplicity that 𝑓 is differentiable, the same argument on this subsection can be done by using

subgradients.
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lower bound our function 𝑓 , and such that 𝑓(𝑥𝑡) = ℓ𝑡(𝑥𝑡), we could use them as losses of an

online learning problem, weighted by 𝑎𝑡. In such a case we obtain

𝑓(�̄�𝑎)− 𝑓(𝑥*) ≤
1∑︀𝑇
𝑡=1 𝑎𝑡

𝑇∑︁
𝑡=1

𝑎𝑡(ℓ𝑡(𝑥𝑡)− ℓ𝑡(𝑥*)) ≤
𝑅𝑇∑︀𝑇
𝑡=1 𝑎𝑡

. (2.2.3)

The case in Equation (2.2.2) is essentially equivalent to taking losses ℓ𝑡(𝑥) = 𝑓(𝑥𝑡)+⟨∇𝑓(𝑥𝑡), 𝑥−
𝑥𝑡⟩, since adding constants to the losses (like 𝑓(𝑥𝑡)− ⟨∇𝑓(𝑥𝑡), 𝑥𝑡⟩ in this case) does not change

the regret if we play the same points. It is not exactly equivalent because an algorithm could do

different things if it observes different loss functions. As another example, if we further assume

that 𝑓 is 𝜇-strongly convex, we could make the losses be ℓ𝑡(𝑥) = ⟨∇𝑓(𝑥𝑡), 𝑥⟩ + 𝜇
2‖𝑥 − 𝑥𝑡‖22,

weighted by 𝑎𝑡, to conclude that 𝑓(�̄�𝑎) ≤ 𝑅𝑇 /(
∑︀𝑇

𝑡=1 𝑎𝑡) with �̄�𝑎 is defined as above and 𝑅𝑇 is

the corresponding regret. Note that in fact we only needed 𝑓(𝑥𝑡) ≤ ℓ𝑡(𝑥𝑡) and ℓ𝑡(𝑥*) ≤ 𝑓(𝑥*) in

(2.2.3). If one can set ℓ𝑡(𝑥𝑡) = 𝑓(𝑥𝑡), the bound is tighter than in the case ℓ𝑡(𝑥𝑡) > 𝑓(𝑥𝑡), so such

an approach is preferred. Also, most of the time one uses ℓ𝑡(𝑥) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝒳 instead of

just ℓ𝑡(𝑥*) ≤ 𝑓(𝑥*) because, similarly to the examples with the convexity or the strong convexity

assumption, we usually obtain these global lower bounds from our assumptions and we do not

know ℓ𝑡(𝑥
*) or 𝑥*. In Chapter 3, we use an online algorithm for one part of our solution and we

actually need to use losses that do not satisfy ℓ𝑡(𝑥) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝒳 (the function 𝑓 is not

convex in this case). Our losses there only lower bound the function in a region for which we

know 𝑥* is in.

So far, we have presented examples in which an optimization problem is reduced to an online

one. But we could even use an online learning algorithm to control one part of the optimization

only, while exploiting other properties of our function in other different ways. For simplicity, we

will just mention the structure of two examples, leaving the details of their realizations for later.

At this point, we know that for convex optimization we can focus on bounding the following,

since 𝑓(�̄�𝑎)− 𝑓(𝑥*) can be bounded, as in Equation (2.2.3), by a convex combination of

𝑓(𝑥𝑡)− 𝑓(𝑥*) ≤ ⟨∇𝑓(𝑥𝑡), 𝑧𝑡 − 𝑥*⟩+ ⟨∇𝑓(𝑥𝑡), 𝑥𝑡 − 𝑧𝑡⟩, (2.2.4)

for 𝑡 = 1, . . . , 𝑇 . In this decomposition, the online learning algorithm could tell us to play 𝑧𝑡 but

instead we play 𝑥𝑡, and receive the loss 𝑎𝑡⟨∇𝑓(𝑥𝑡), ·⟩. The online learning algorithm controls a

weighted sum of ⟨∇𝑓(𝑥𝑡), 𝑧𝑡 − 𝑥*⟩, for 𝑡 = 1, . . . , 𝑇 and the other part of the right hand side of

(2.2.4) could be controlled in other ways. This decomposition in fact will be used for one analysis

of Nesterov’s AGD. Another example of structure is the following:

𝑓(𝑥𝑡)− 𝑓(𝑥*) ≤ ⟨∇𝑓(𝑥𝑡), 𝑥𝑡 − 𝑥*⟩ = ⟨∇𝑓(𝑥𝑡), 𝑥𝑡 − 𝑥*⟩+ ⟨∇𝑓(𝑥𝑡)−∇𝑓(𝑥𝑡), 𝑥𝑡 − 𝑥*⟩ (2.2.5)

where ∇𝑓(𝑥𝑡) is defined as the vector whose 𝑖-th coordinate is max{−1,min{1,∇𝑖𝑓(𝑥)}}, that is,

∇𝑖𝑓(𝑥) clipped to [−1, 1]. In this decomposition, we would have 𝑎𝑡⟨∇𝑓(𝑥𝑡), ·⟩ as losses. This can

be useful because for linear losses, the regret scales with ‖ℓ𝑡‖, for some norm ‖ · ‖ that depends

on the algorithm. If we have a function such that ‖∇𝑓(𝑥𝑡)‖ is very large but it has sufficient
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structure so we can control the second summand of (2.2.5), then we can do something useful

with the online learning algorithm controlling the first summand without paying the potentially

high cost of a bound on ‖∇𝑓(𝑥𝑡)‖. In fact, this is one of the pieces in the solution of the problem

in Chapter 4, which is an idea that already appeared in (Allen-Zhu and Orecchia, 2019).

After this motivation about how online learning can be useful for optimization, we now

present the two most common algorithms there are in this area, and their different equivalent

formulations. Each formulation provides a different point of view of the methods, which helps

with intuition.

While we limit the exposition of this chapter to deterministic optimization, we note that online

learning can be applied to optimization with a stochastic gradient oracle as well. For instance,

one can consider that our algorithm samples the next prediction point 𝑥𝑡 from a distribution and

the adversary, that cannot predict the outcome of the sample but has access to our distribution,

can select E [∇𝑓(𝑥𝑡)] as loss, so we can bound E
[︁∑︀𝑇

𝑡=1∇𝑓(𝑥𝑡)−min𝑢∈𝒳 ∇𝑓(𝑢)
]︁
. We note that

when the gradient oracle has more structure, like in the finite sum case, additional ideas are used

to achieve acceleration like variance reduction (Defazio, Bach, and Lacoste-Julien, 2014; Johnson

and Zhang, 2013; Zhang, Mahdavi, and Jin, 2013) and negative momentum (Allen-Zhu, 2017a).

2.2.1 Follow the Regularized Leader

In an online learning problem, our aim is to predict the best point we would play in hindsight.

If the losses are regular enough, intuition would tell us that the optimum of the sum of the cur-

rently observed losses could be a good point, since it should not change much from one iteration

to another. This intuition is almost true. This strategy works for very regular optimization

problems, but it can fail for classes of functions like Lipschitz convex losses whereas a slight but

important algorithmic modification proves to be more powerful. Playing the current optimum is

the so-called Follow the Leader (FTL) strategy.

Example 2.2.1 (Failure of FTL). A way to make FTL fail is to generate a sequence of one

dimensional linear losses such that the sign of the slope of
∑︀𝑡

𝑖=1 ℓ𝑡 is changing at every iteration

𝑡. In that case the optimizer is very unstable and we predict the point of worse instantaneous

loss for 𝑡 ≥ 2. Concretely, let 𝒳 = [−1, 1] and set the first loss to ℓ1(𝑥) = 𝑥. Then, let the rest

of the sequence {ℓ𝑡}𝑇𝑡=2 be −2𝑥, 2𝑥,−2𝑥, 2𝑥, etc. For any time 𝑡 ≥ 2 the loss incurred by FTL is

2, so
∑︀𝑇

𝑡=1 ℓ𝑡(𝑥𝑡) ≥ 2(𝑇 − 1) but
∑︀𝑇

𝑡=1 ℓ𝑡(𝑥) ∈ {𝑥,−𝑥} so the loss of the best fixed action is −1
and the regret is at least 2𝑇 − 1. In rounds 𝑡 = 2, . . . , 𝑇 our algorithm selected the worse possible

point. This is by no means a good strategy in this case.

What is missing in the FTL approach in order to have a good algorithm is some mechanism

that stabilizes our iterates. This is captured by the Follow the Regularized Leader (FTRL)

approach, that for each round 𝑡 = 1, . . . , 𝑇 , predicts

𝑥𝑡 ∈ argmin
𝑥∈𝒳

{︃
𝑡−1∑︁
𝑖=1

ℓ𝑖(𝑥) + 𝜓𝑡(𝑥)

}︃
, (FTRL)
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where 𝜓𝑡 is a regularizer that makes the sum strongly convex with respect to some norm ‖ · ‖,
and will make the predictions stable against attacks like the one in the example above. But

what is the price to pay for adding a regularizer? The interesting point is that it will just add

a constant factor in most important cases. Assume for simplicity and without loss of generality

that min𝑥∈𝒳 𝜓𝑡(𝑥) = 0, since adding a constant will not change the argmin. Adding a regularizer

𝜓𝑡 does not contribute to more than a constant factor to the regret bound on 𝑅𝑡 we aim to prove

if the maximum value it can take is of the order of this bound! So we can regularize without any

worries that this will worsen our estimation: it comes (almost) for free. One would only worry

in a case in which these small extra constants are important.

Regarding FTRL, we note that the approach still has one potential issue, that was also present

in the FTL strategy, which is that the minimization subproblem could be expensive. But as in

the case with convex optimization, one can simplify the update by choosing lower bounds ℒ𝑡 on

the losses ℓ𝑡, such that ℒ𝑡(𝑥𝑡) = ℓ𝑡(𝑥𝑡) because in that case we have

𝑅ℓ𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡(𝑥𝑡)−min
𝑢∈𝒳

𝑇∑︁
𝑡=1

ℓ𝑡(𝑢) ≤
𝑇∑︁
𝑡=1

ℒ𝑡(𝑥𝑡)−min
𝑢∈𝒳

𝑇∑︁
𝑡=1

ℒ𝑡(𝑢)
def
= 𝑅ℒ

𝑇 , (2.2.6)

and 𝜓𝑡(𝑥) and ℒ𝑡 are chosen so that problem argmin𝑥∈𝒳 {𝜓𝑡(𝑥)+
∑︀𝑡−1

𝑖=1 ℒ𝑖(𝑥)} can be solved faster

while still being strongly convex. We could potentially pay a considerably greater regret by doing

this simplification. Solutions trade off efficiency of the subproblem with better estimations of the

regret. This depends on the structure of the problem and on which lower bound estimates we

can build on the losses that allow for solving the subproblem fast. One should take into account

that in light of (2.2.6), for two surrogate losses ℒ′𝑡 ≤ ℒ𝑡 ≤ ℓ𝑡 with ℒ′𝑡(𝑥𝑡) = ℒ𝑡(𝑥𝑡) = ℓ𝑡(𝑥𝑡), we

have that ℒ′𝑡 cannot yield a better regret. It is only natural: looser losses lose more. When using

online learning for optimization, this trade-off translates to less subproblem time versus fewer

iterations. In many instances, the subproblem is chosen so it can be solved in closed form.

Example 2.2.2. Let’s take a natural surrogate of convex losses: a subgradient. That is ℒ𝑡(𝑥) =
⟨𝑔𝑡, 𝑥⟩ for some 𝑔𝑡 ∈ 𝜕ℓ𝑡(𝑥𝑡). If we take a regularizer 𝜓𝑡(𝑥) = 𝜎

2 ‖𝑥−𝑥1‖
2
2, for an arbitrary initial

point 𝑥1 (note this is compatible with the definition of 𝑥1 in FTRL), which is 𝜎-strongly convex

with respect to ‖ · ‖2 then the minimization problem can be easily solved for 𝒳 = R𝑛:

argmin
𝑥∈𝒳

{
𝑡−1∑︁
𝑖=1

⟨𝑔𝑖, 𝑥⟩+
𝜎

2
‖𝑥− 𝑥1‖22} = 𝑥1 −

1

𝜎

𝑡−1∑︁
𝑖=1

𝑔𝑖. (2.2.7)

The following lemma shows a bound on the regret that is incurred when playing according

to the FTRL strategy.

Lemma 2.2.3. Let 𝒳 ⊆ R𝑛 be closed and convex and let ℓ𝑡 : 𝒳 → R be convex. Assume

𝜓𝑡 +
∑︀𝑡−1

𝑖=1 ℓ𝑖 is 𝜎𝑡-strongly convex with respect to ‖ · ‖, let 𝑥𝑡 be as in (FTRL). Then, for all

𝑢 ∈ 𝒳 we have

𝑇∑︁
𝑡=1

(ℓ𝑡(𝑥𝑡)− ℓ𝑡(𝑢)) ≤ 𝜓𝑇+1(𝑢)−min
𝑥∈𝒳

𝜓1(𝑥) +

𝑇∑︁
𝑡=1

(
‖𝑔𝑡‖2*
2𝜎𝑡

+ 𝜓𝑡(𝑥𝑡+1)− 𝜓𝑡+1(𝑥𝑡+1)).
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In particular let min𝑢∈𝒳 𝜓1(𝑢) = 0 and 𝜓𝑡(𝑥) = 𝜓(𝑥)/𝑎𝑡−1 for a fixed 𝜓 that is 𝜎-strongly convex

with respect to ‖ · ‖, and 0 < 𝑎𝑡 ≤ 𝑎𝑡−1, i.e., increasing regularizers. Then for all 𝑢 ∈ 𝒳 :

𝑇∑︁
𝑡=1

(ℓ𝑡(𝑥𝑡)− ℓ𝑡(𝑢)) ≤
𝜓(𝑢)

𝑎𝑇−1

+
𝑇∑︁
𝑡=1

𝑎𝑡−1‖𝑔𝑡‖2*
2𝜎

, (2.2.8)

for all subgradients 𝑔𝑡 ∈ 𝜕ℓ𝑡(𝑥𝑡).

Proof For each round 𝑡 we have

𝑇∑︁
𝑡=1

(ℓ𝑡(𝑥𝑡)− ℓ𝑡(𝑢))
1
=

𝑇∑︁
𝑡=1

[︃
(ℓ𝑡(𝑥𝑡) +

𝑡−1∑︁
𝑖=1

ℓ𝑖(𝑥𝑡) + 𝜓𝑡(𝑥𝑡))− (

𝑡∑︁
𝑖=1

ℓ𝑖(𝑥𝑡+1) + 𝜓𝑡+1(𝑥𝑡+1))

]︃

+ (
𝑇∑︁
𝑖=1

ℓ𝑖(𝑥𝑇+1) + 𝜓𝑇+1(𝑥𝑇+1))− (
𝑇∑︁
𝑖=1

ℓ𝑖(𝑢) + 𝜓𝑇+1(𝑢))

+ 𝜓𝑇+1(𝑢)− 𝜓1(𝑥1)

2
≤ 𝜓𝑇+1(𝑢)−min

𝑥∈𝒳
𝜓1(𝑥) +

𝑇∑︁
𝑡=1

(
‖𝑔𝑡‖2*
2𝜎𝑡

+ 𝜓𝑡(𝑥𝑡+1)− 𝜓𝑡+1(𝑥𝑡+1)).

In 1 , we just add and subtract some terms in order to capture, in the first line, the intuition

about the fact that the minimizer of the current sum of losses should be a good solution, if

regularized. Indeed, we played 𝑥𝑡 without knowing ℓ𝑡, and we want to compute how well we did

in terms of regularized
∑︀𝑡

𝑖=1 ℓ𝑖 in comparison to the point we would play if we knew the future

by one step, that is, the point 𝑥𝑡+1, which could (almost) be the comparator if we stopped at

time 𝑡. We say almost because this reasoning holds up to regularization. But as we mentioned

before, the regularizer in general will be something of the order of the regret we expect to obtain

or lower, so having it in the estimation will not hurt more than a constant factor. As a side effect,

up to regularization, 𝑥𝑇+1 is the point we would play if we knew all the losses in hindsight, so we

can use it to drop the losses of the arbitrary fixed action, which are worse up to regularization.

Thus, we show such comparison in the second line. The third line contains some remaining terms.

Hence, in 2 , we can drop this second line, use the definition of 𝑥1, and use strong convexity to

bound the first line. In order to do the last thing, we would want to use the same function for

the comparison, say 𝜓𝑡+
∑︀𝑡

𝑖=1 ℓ𝑖, so we add and subtract 𝜓𝑡(𝑥𝑡+1) and use the fact that for any

𝜎𝑡-strongly convex function 𝑓 : R𝑛 → R with 𝑥* as optimizer and any 𝑔𝑡 ∈ 𝜕𝑓(𝑥𝑡) as subgradient

at 𝑥𝑡 we have

𝑓(𝑥𝑡)− 𝑓(𝑥𝑡+1)
1
≤ 𝑓(𝑥𝑡)− 𝑓(𝑥*)

2
≤ ⟨𝑔𝑡, 𝑥𝑡 − 𝑥*⟩ − 𝜎𝑡‖𝑥* − 𝑥𝑡‖2

3
≤ ‖𝑔𝑡‖

2
*

2𝜎𝑡
,

where 1 uses optimality of 𝑥*, 2 holds by strong convexity and 3 is Cauchy-Schwarz and

2𝑎𝑏 ≤ 𝑎2 + 𝑏2 for 𝑎, 𝑏 ∈ R≥0: ⟨𝑣, 𝑤⟩ ≤ ‖𝑣‖*‖𝑤‖ ≤ 1
2‖𝑣‖

2
* +

1
2‖𝑤‖

2. Finally, for 𝑓 = 𝜓𝑡 +
∑︀𝑡−1

𝑖=1 ℓ𝑖,

𝑔𝑡 can be taken in 𝜕ℓ𝑡(𝑥𝑡) since 𝑥𝑡 = argmin𝑥∈𝒳 {𝑓(𝑥)− ℓ𝑡(𝑥)} so 0 ∈ 𝜕(𝑓 − ℓ𝑡)(𝑥𝑡) and thus any

subgradient of ℓ𝑡(𝑥𝑡) is a subgradient of 𝑓(𝑥𝑡) (add the convexity inequalities for 𝑓 − ℓ𝑡 and ℓ𝑡

at 𝑥𝑡) so the first part of the theorem works for any 𝑔𝑡 ∈ 𝜕ℓ𝑡(𝑥𝑡).
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For the second part of the theorem we note that adding a constant to the regularizer does not

change the update rule so the assumption min𝑢∈𝒳 𝜓1(𝑢) = 0 is done without loss of generality.

By the definition of the regularizers we have 𝜓𝑡(𝑥𝑡+1) − 𝜓𝑡+1(𝑥𝑡+1) ≤ 0 and that 𝜓𝑡 is ( 𝜎
𝑎𝑡−1

)-

strongly convex. Finally, note that since we did not use 𝑥𝑇+1 nor 𝜓𝑇+1 for any prediction, we

could change them for the purpose of the analysis. The first summand of the bound will be best

if 𝜓𝑇+1 is as small as possible, but we require 𝜓𝑇 (𝑥𝑇+1) ≤ 𝜓𝑇+1(𝑥𝑇+1) to remove the regularizers

of the second summand. Thus, we can set 𝜓𝑇+1 = 𝜓𝑇 and obtain 𝜓𝑇+1(𝑢) = 𝜓(𝑢)/𝑎𝑇−1.

Remark 2.2.4 (Arbitrary initialization). We note that by using 𝐷𝜓(𝑥, 𝑥1) as first regularizer

in (FTRL) for an arbitrary point 𝑥1 ∈ 𝒳 and some strongly convex 𝜓 we have that the first point

defined by (FTRL) is precisely 𝑥1. Also, applying part 2) of the previous Lemma 2.2.3 with

regularizers 𝜓𝑡(𝑥) = 𝐷𝜓(𝑥, 𝑥1)/𝑎𝑡−1 for some 𝜎-strongly convex map 𝜓, we obtain the same

result but starting at an arbitrary point 𝑥1. In such a case, the error depends on 𝐷𝜓(𝑢, 𝑥1)

instead of on 𝜓(𝑢).

Remark 2.2.5. Since we used the strong convexity property of the FTRL subproblem in our

theorem, the guarantee depends on the losses via their subgradients only. This means that this

bound would be the same if we had just used linearized losses, i.e., using a subgradient in 𝜕ℓ𝑡(𝑥𝑡)

as the loss. Except for the minor fact that the bound would depend on the exact subgradient

that was chosen. However, if the losses satisfy stronger properties, we can obtain improvements.

If the losses were 𝜇𝑡-strongly convex, we could set ℒ𝑡(𝑥) = ⟨𝑔𝑡, 𝑥⟩ + 𝜇𝑡
2 ‖𝑥 − 𝑥𝑡‖

2 and we would

actually not need any regularizer. The term
∑︀𝑡−1

𝑖=1 ℒ𝑖 would be strongly convex and this fact can be

exploited in the same way as in the proof above to directly guarantee stability of the predictions and

low regret. There are many other variants and settings in which one could think of applying this

technique. Another example would be to have 𝜓𝑡(𝑥) = 𝜎𝑡
2 ‖𝑥−𝑥1‖

2
2 so that solving the subproblem

consists of the proximal operator of the loss, which could be applied to proximable lower bound

estimations of the actual loss, which is the usual approach in composite optimization. On another

note, observe that even if we get the same worse-case regret bound by linearizing the losses or

not in the lemma above, in practice one would expect to obtain better empirical performance if

the estimations are better. An empirical example in machine learning is (Asi and Duchi, 2019)

that uses the fact that many machine learning losses are non-negative so it can use surrogates of

losses ℓ𝑡 that are max{0, ⟨𝑔𝑡, 𝑥⟩} and obtains more empirical robustness to hyperparameters as a

consequence. In any case, using FTRL with gradients as surrogates for the losses plus strongly

convex regularizers will be enough for acceleration of convex and smooth functions, so we will not

elaborate more on other variants of FTRL.

Example 2.2.6 (Non-smooth convex optimization and adaptivity). We can use the

previous Lemma 2.2.3 applied to convex optimization for an 𝐿-Lipschitz function to obtain

optimal worse-case rates, up to constants. If we use the bound ‖𝑔𝑡‖2* ≤ 𝐿2, select the reg-

ularizer 𝜓 = 𝜎
2 ‖𝑥 − 𝑥1‖22, and choose constant learning rate we can optimize the bound at
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𝑎𝑡 = 𝑎
def
=

√︁
‖𝑢−𝑥1‖22𝜎2

𝑇𝐿2 and conclude

𝑓

(︃
1

𝑇

𝑇∑︁
𝑡=1

𝑥𝑡

)︃
− 𝑓(𝑥*)

1
≤

𝑅𝑇
𝑇

2
≤ 1

𝑇

(︂
𝜎‖𝑢− 𝑥1‖22

2𝑎
+
𝑎𝑇𝐿2

2𝜎

)︂
3
=

𝐿‖𝑢− 𝑥1‖2√
𝑇

.

Inequality 1 holds by (2.2.2), 2 is the guarantee of Lemma 2.2.3 and 3 holds by the choice of

𝑎, which optimizes the bound by the weighted arithmetic-geometric inequality. The rate obtained

is optimal up to constants (Nemirovski and Yudin, 1983b). Note we used the value ‖𝑢 − 𝑥1‖2
in the algorithm, which is generally not known. There are techniques to adapt to this value that

allow to obtain the same bound up to a log factor without assuming knowledge on ‖𝑢− 𝑥1‖2, cf.

(Orabona and Pál, 2016) for instance. The extra log factor is necessary in the online learning

problem with linear and 𝐿-Lipschitz losses if one does not assume ‖𝑢− 𝑥1‖2 is known (Streeter

and McMahan, 2012). We note that adapting to 𝐿 in case ‖𝑢−𝑥1‖2 is known is also possible and

it only requires to pay an extra log factor. However, adapting to both 𝐿 and ‖𝑢 − 𝑥1‖2 requires

paying an exponential penalty on the regret (Cutkosky and Boahen, 2017).

We can see in this example how the intuition we provided about the regularizer is satisfied:

𝜓𝑇+1(𝑢) = 𝜓(𝑢)/𝑎𝑇−1 is of the order of the regret bound. However, note we also had to use the

value of 𝑇 , and if we wanted to optimize without setting a final time 𝑇 we would have to set the

learning rate 𝑎𝑡 to something proportional to 1/
√
𝑡 so regularizer is always of the order of the

optimal regret
√
𝑡 for any time 𝑡. In such a case, the second summand becomes proportional to∑︀𝑡

𝑖=1 1/
√
𝑖 ≈
√
𝑡 which is also of the right order, so we get optimal rates up to constants as well.

That is, for 𝑎𝑡 =
√︁

‖𝑢−𝑥1‖22𝜎2

𝑡𝐿2 , we have

𝑓(�̄�𝑡)− 𝑓(𝑥*) ≤
𝑅𝑡
𝑡
≤ 𝐿‖𝑢− 𝑥1‖2

√
𝑡− 1

2𝑡
+

∑︀𝑡
𝑖=1

1√
𝑖
𝐿‖𝑢− 𝑥1‖2
2𝑡

= 𝑂

(︂
𝐿‖𝑢− 𝑥1‖2√

𝑡

)︂
,

where �̄�𝑡
def
= 1

𝑡

∑︀𝑡
𝑖=1 𝑥𝑖.

Remark 2.2.7 (Dual point of view on FTRL). It turns out that FTRL with linearized losses

has a simple dual formulation. Abusing the notation, let ℓ𝑡 be the vector that defines the loss

function. If 𝜓 is strongly convex then we have, by Fact 2.1.6,

𝑥𝑡 = argmin
𝑥∈𝒳

{︃
𝜓𝑡(𝑥) +

𝑡−1∑︁
𝑖=1

⟨ℓ𝑖, 𝑥⟩

}︃
= ∇𝜓*

𝑡+1

(︃
−

𝑡−1∑︁
𝑖=1

ℓ𝑖

)︃
.

So if we start with a dual variable 𝑧1 = 0, the algorithm can be written as

𝑥𝑡 = ∇𝜓*
𝑡 (𝑧𝑡); 𝑧𝑡+1 = 𝑧𝑡 − ℓ𝑡, for 𝑡 = 1, . . . , 𝑇 . (2.2.9)

That is, FTRL with linearized losses consists of performing gradient descent on the dual space

(on the variables 𝑧𝑡) and then we use the projection onto the primal as the prediction for each

iteration. The map ∇𝜓*
𝑡 acts as the projection operation. This projection can be computed in

two steps in case that we can extend the domain of definition of 𝜓𝑡 : 𝒳 → R to R𝑛. Indeed, let
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Ψ𝑡 : R
𝑛 → R be a differentiable strongly convex map such that 𝜓𝑡(𝑥) = Ψ𝑡(𝑥) for all 𝑥 ∈ 𝒳 .

Then

𝑥𝑡 = argmin
𝑥∈𝒳

{𝐷Ψ𝑡(𝑥, �̂�𝑡)} , where �̂�𝑡 = argmin
𝑥∈R𝑛

{︃
Ψ𝑡(𝑥) +

𝑡−1∑︁
𝑖=1

⟨ℓ𝑖, 𝑥⟩

}︃
1
= ∇Ψ*

𝑡 (−
𝑡−1∑︁
𝑖=1

ℓ𝑖),

(2.2.10)

because

argmin
𝑥∈𝒳

{𝐷Ψ𝑡(𝑥, �̂�𝑡)}
2
= argmin

𝑥∈𝒳
{Ψ𝑡(𝑥)− ⟨∇Ψ(�̂�𝑡), 𝑥⟩}

3
= argmin

𝑥∈𝒳
{Ψ𝑡(𝑥) + ⟨

𝑡−1∑︁
𝑖=1

ℓ𝑖, 𝑥⟩} = 𝑥𝑡.

where 1 holds by Fact 2.1.6, 2 uses the definition of the Bregman divergence, and 3 is due to

∇Ψ*(R𝑛) = R𝑛, equation 1 , and the discussion after Fact 2.1.6, that implies ∇Ψ(∇Ψ*(𝑧)) = 𝑧

for all 𝑧 ∈ R𝑛. This formulation may have computational advantages if the two argmin’s in

(2.2.10) are simple. It also gives intuition about the behavior of the iterates.

We note that due to this dual formulation and due to historical reasons, the FTRL algorithm

with linear losses is also known in the literature by other different names: dual averaging, lazy

Mirror Descent, and Nesterov’s Mirror Descent. The other online learning algorithm we will

present in what follows is (Online) Mirror Descent, which is also called: greedy Mirror Descent,

or Nemirovski’s Mirror Descent. Because of these different names and due to the fact that the

algorithms present some similarities, one can see in the literature that FTRL is sometimes just

called Mirror Descent as well. This can be a source of confusion when delving into the literature.

2.2.2 (Online) Mirror Descent

Mirror descent is an algorithm that was originally designed for convex optimization by Ne-

mirovski and Yudin (1983b) and that can be used for online learning with linear losses. When it

is used in online learning it is called Online Mirror Descent (OMD). OMD has several different

equivalent formulations, each of them providing different intuition. Essentially, we want to keep

following our initial intuition about predicting points that give lower values for past losses that

at the same time are stable. In order to do that, we explicitly force the next prediction to be

close to the current one in this algorithm. On the other hand we saw that FTRL with linear

losses can be seen as performing unconstrained GD in the dual space, using a projection operator

only to compute a prediction. This algorithm is also equivalent to a dual GD, but this time it

is projected GD, where the constraint set is the dual set 𝒟 = ∇𝜓(𝒳 ), and where the projection

operator is ∇𝜓∘∇𝜓*.4 The function 𝜓 is a fixed differentiable strongly convex regularizer. So the

method can be expressed with these two equivalent formulations. Let 𝑔𝑡 ∈ 𝜕ℓ𝑡 be a subgradient

of the convex loss ℓ𝑡. We have

𝑧𝑡+1 = ∇𝜓(𝑥𝑡)− 𝑎𝑡𝑔𝑡; 𝑥𝑡+1 = ∇𝜓*(𝑧𝑡+1), for 𝑡 = 1, . . . , 𝑇 . (2.2.11)
4We note that when 𝒟 = R𝑛, or equivalently, when the projection operator ∇𝜓 ∘ ∇𝜓* is the identity, then

FTRL and OMD are the same algorithm.
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𝑥𝑡+1 = argmin
𝑥∈𝒳

{⟨𝑔𝑡, 𝑥⟩+
1

𝑎𝑡
𝐷𝜓(𝑥, 𝑥𝑡)}, for 𝑡 = 1, . . . , 𝑇 . (2.2.12)

Above, 𝑎𝑡 ∈ R>0 is a learning rate and 𝑥1 ∈ 𝒳 is an arbitrary initial point. As with FTRL, if

we have an extension Ψ : R𝑛 → R of 𝜓 that is differentiable and strongly convex, we can break

the iteration (2.2.12) into two simpler minimization problems:

𝑥𝑡+1 = argmin
𝑥∈𝒳

{𝐷Ψ(𝑥, �̂�𝑡+1)} ,

where �̂�𝑡+1 = argmin𝑥∈R𝑛
{︁
⟨𝑔𝑡, 𝑥⟩+ 1

𝑎𝑡
𝐷Ψ(𝑥, 𝑥𝑡)

}︁
= ∇Ψ*(∇𝜓(𝑥𝑡)− 𝑎𝑡𝑔𝑡).

We have used a fixed regularizer and variable learning rates (which corresponds to the struc-

ture of regularizers of part 2 in Lemma 2.2.3) but we could have used generic time varying

regularizers as in the FTRL approach. That is, we can generalize the update of (2.2.12) to

𝑧𝑡+1 = ∇𝜓𝑡+1(𝑥𝑡)− 𝑔𝑡; 𝑥𝑡+1 = ∇𝜓*
𝑡+1(𝑧𝑡+1), for 𝑡 = 1, . . . , 𝑇 . (2.2.13)

or equivalently

𝑥𝑡+1 = argmin
𝑥∈𝒳

{⟨𝑔𝑡, 𝑥⟩+𝐷𝜓𝑡(𝑥, 𝑥𝑡)}, for 𝑡 = 1, . . . , 𝑇 . (2.2.14)

We have the following guarantee on the OMD algorithm.

Lemma 2.2.8 (Mirror Descent with 𝜓/𝑎𝑡 as regularizers). Let 𝒳 ⊆ R𝑛 be closed and

convex and let ℓ𝑡 ∈ R𝑛 be convex losses and 𝑔𝑡 ∈ 𝜕ℓ𝑡. For a 𝜎-strongly convex regularizer

𝜓 : 𝒳 → R with respect to ‖ · ‖, run OMD with regularizers 𝜓𝑡 = 𝜓/𝑎𝑡 for some 𝑎𝑡 > 0, as in

(2.2.12). Then, for all 𝑢 ∈ 𝒳 we have

1. Classical Mirror Descent lemma (one step).

𝑎𝑡⟨𝑔𝑡, 𝑥𝑡 − 𝑢⟩ ≤ 𝑎𝑡⟨𝑔𝑡, 𝑥𝑡 − 𝑥𝑡+1⟩ −
𝜎

2
‖𝑥𝑡+1 − 𝑥𝑡‖2 +𝐷𝜓(𝑢, 𝑥𝑡)−𝐷𝜓(𝑢, 𝑥𝑡+1)

≤ 𝑎2𝑡 ‖𝑔𝑡‖2*
2𝜎

+𝐷𝜓(𝑢, 𝑥𝑡)−𝐷𝜓(𝑢, 𝑥𝑡+1).

2. Regret with increasing regularizers, i.e., with decreasing 𝑎𝑡 < 𝑎𝑡−1 (like (2.2.8) in FTRL):

𝑇∑︁
𝑡=1

ℓ𝑡(𝑥𝑡)− ℓ𝑡(𝑢) ≤
𝑇∑︁
𝑡=1

⟨𝑔𝑡, 𝑥𝑡 − 𝑢⟩ ≤
1

2𝜎

𝑇∑︁
𝑡=1

𝑎𝑡‖𝑔𝑡‖2* + max
1≤𝑡≤𝑇

𝐷𝜓(𝑢, 𝑥𝑡)

𝑎𝑇
.

3. Guarantee on weighted losses, with arbitrarily weighted regularizers:

1∑︀𝑇
𝑡=1 𝑎𝑡

𝑇∑︁
𝑡=1

𝑎𝑡⟨𝑔𝑡, 𝑥𝑡 − 𝑢⟩ ≤
𝐷𝜓(𝑢, 𝑥1)∑︀𝑇

𝑡=1 𝑎𝑡
+

1

2𝜎

𝑇∑︁
𝑡=1

𝑎2𝑡 ‖𝑔𝑡‖2*∑︀𝑇
𝑡=1 𝑎𝑡

.

Note we can use part 3. for convex optimization. That is, we can show that with 𝑢 = 𝑥*

and 𝑔𝑡 ∈ 𝜕𝑓(𝑥𝑡), the point �̄�𝑎 =
∑︀𝑇
𝑡=1 𝑎𝑡𝑥𝑡∑︀𝑇
𝑡=1 𝑎𝑡

has an optimality gap given by the right hand side of

Lemma 2.2.8.3.
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Proof of Lemma 2.2.8. Note that 𝐷𝜓𝑡(𝑥, 𝑦) =
1
𝑎𝑡
𝐷𝜓(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝒳 . The first part of

the lemma follows from

𝑎𝑡⟨𝑔𝑡, 𝑥𝑡 − 𝑢⟩ = 𝑎𝑡⟨𝑔𝑡, 𝑥𝑡 − 𝑥𝑡+1⟩+ 𝑎𝑡⟨𝑔𝑡, 𝑥𝑡+1 − 𝑢⟩
1
≤ 𝑎𝑡⟨𝑔𝑡, 𝑥𝑡 − 𝑥𝑡+1⟩ − ⟨∇𝑤 𝐷𝜓(𝑤, 𝑥𝑡)|𝑤=𝑥𝑡+1

, 𝑥𝑘+1 − 𝑢⟩

2
= 𝑎𝑡⟨𝑔𝑡, 𝑥𝑡 − 𝑥𝑡+1⟩ −𝐷𝜓(𝑥𝑡+1, 𝑥𝑡) +𝐷𝜓(𝑢, 𝑥𝑡)−𝐷𝜓(𝑢, 𝑥𝑡+1)

3
≤ 𝑎𝑡⟨𝑔𝑡, 𝑥𝑡 − 𝑥𝑡+1⟩ −

𝜎

2
‖𝑥𝑡+1 − 𝑥𝑡‖2 +𝐷𝜓(𝑢, 𝑥𝑡)−𝐷𝜓(𝑢, 𝑥𝑡+1)

4
≤ 𝑎2𝑡 ‖𝑔𝑡‖2*

2𝜎
+𝐷𝜓(𝑢, 𝑥𝑡)−𝐷𝜓(𝑢, 𝑥𝑡+1)

Inequality 1 comes from the first-order optimality condition of the definition of 𝑥𝑡, that is 5

below,

⟨∇𝑤 𝐷𝜓(𝑤, 𝑥𝑡)|𝑤=𝑥𝑡+1
+ 𝑎𝑡𝑔𝑡, 𝑢− 𝑥𝑡+1⟩ = 𝑎𝑡⟨∇𝑤 𝐷𝜓𝑡(𝑤, 𝑥𝑡)|𝑤=𝑥𝑡+1

+ 𝑔𝑡, 𝑢− 𝑥𝑡+1⟩
5
≥ 0,

for all 𝑢 ∈ 𝒳 . 2 uses is the triangle equality of Bregman divergences (cf. Lemma 2.1.8.3 and

Lemma 2.1.8.5). Inequality 3 uses strong convexity of 𝐷𝜓(·, 𝑥𝑡) which holds due to the strong

convexity of 𝜓. Finally 4 is derived from ⟨𝑣, 𝑤⟩ − 1
2‖𝑤‖

2 ≤ 1
2‖𝑣‖

2
* for 𝑣, 𝑤 ∈ R𝑛, that holds

by Cauchy-Schwarz and ‖𝑣‖* · ‖𝑤‖ ≤ 1
2‖𝑣‖

2
* +

1
2‖𝑤‖

2. Essentially, this last step computes the

maximum difference between the optimum of a quadratic with negative leading term and such

quadratic evaluated at 𝑥𝑡. When we are in an unconstrained problem this bound is the natural

thing to use. However, in a constrained problem it could be too loose and it usually makes more

sense to use the bound after 3 directly. We note that if 𝜓 = 𝜎
2 ‖ · −𝑥1‖

2
2 and 𝒳 = R𝑛 we have

that 1 and 3 are equalities, so in that case we could obtain an equality for the regret.

For the second part, we add up the first part, divided by 𝑎𝑡, and obtain

𝑇∑︁
𝑡=1

⟨𝑔𝑡, 𝑥𝑡 − 𝑢⟩
1
≤ 1

2𝜎

𝑇∑︁
𝑡=1

𝑎𝑡‖𝑔𝑡‖2* +
1

𝑎1
𝐷𝜓(𝑢, 𝑥1) +

𝑇∑︁
𝑡=2

(︂
1

𝑎𝑡
− 1

𝑎𝑡−1

)︂
𝐷𝜓(𝑢, 𝑥𝑡)

2
≤ 1

2𝜎

𝑇∑︁
𝑡=1

𝑎𝑡‖𝑔𝑡‖2* + max
1≤𝑡≤𝑇

𝐷𝜓(𝑢, 𝑥𝑡)

𝑎𝑇
.

In 1 we also dropped −𝐷𝜓(𝑢, 𝑥𝑇+1)/𝑎𝑇 ≤ 0. Inequality 2 uses 𝑎𝑡 ≤ 𝑎𝑡−1, bounds the Bregman

divergences by the maximum and adds up the telescoping sum. Note that if we were to use

constant learning rates the error term coming from Bregman divergences would be 𝐷𝜓1(𝑢, 𝑥1).

That is, using a constant regularizer we pay for the initial (and constant) regularization at 𝑢.

The rest of the error terms come from changing the point of attraction of regularizers.

Luckily, since for convex optimization it is enough to bound a regret that uses weighted

losses, we can use arbitrary learning rates and prevent paying for the changes in regularizer as in

the case above. This is the motivation of the third part of this lemma, which follows by simply

adding up the first part, dropping −𝐷𝜓(𝑢, 𝑥𝑇+1)/𝑎𝑇 ≤ 0 and normalizing.
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Remark 2.2.9 (General regularizers). We can obtain a more general expression using ar-

bitrary regularizers. Indeed, we note that in the proof of the one-step Lemma 2.2.8.1 above we

could have used arbitrary regularizers to obtain

ℓ𝑡(𝑥𝑡)− ℓ𝑡(𝑢) ≤
‖𝑔𝑡‖2*
2𝜎𝑡

+𝐷𝜓𝑡(𝑢, 𝑥𝑡)−𝐷𝜓𝑡(𝑢, 𝑥𝑡+1),

which added up leads to the following, if we drop −𝐷𝜓𝑇 (𝑢, 𝑥𝑇+1) and reorganize terms:

𝑇∑︁
𝑡=1

(ℓ𝑡(𝑥𝑡)− ℓ𝑡(𝑢)) ≤ 𝐷𝜓1(𝑢, 𝑥1) +
𝑇∑︁
𝑡=1

‖𝑔𝑡‖2*
2𝜎𝑡

+
𝑇∑︁
𝑡=2

(𝐷𝜓𝑡(𝑢, 𝑥𝑡)−𝐷𝜓𝑡−1(𝑢, 𝑥𝑡)).

Intuitively, the regret term coming from the regularizers is: the value of the first regularizer

at 𝑢 and then the changes in regularizer at 𝑢 when we switch from using 𝜓𝑡−1 to using 𝜓𝑡.

One could ask what is the motivation for having the Bregman divergence in the optimization

problem. The answer is that in fact it is not really needed. In the discussion before Lemma 2.1.8

we motivated the Bregman divergences as regularizers with a specific minimizer (and minimum

value 0, just for simplicity and without loss of generality). If we were to use, at iteration 𝑡,

regularizers 𝜓𝑡 with minimizer at 𝑥𝑡 and define 𝑥𝑡+1 = argmin𝑥∈𝒳 {𝜓𝑡(𝑥) + ⟨𝑔𝑡, 𝑥⟩} we would

obtain the same thing and we could translate our guarantees if we use these maps. Indeed, this

is a triviality since in such a case 𝐷𝜓𝑡(𝑥, 𝑥𝑡) = 𝜓𝑡(𝑥)− 𝜓𝑡(𝑥𝑡) and the constant 𝜓𝑡(𝑥𝑡) does not

change the argmin. We make this point to emphasize that the role of Bregman divergences is just

that of regularizers that we build from other regularizers so that the minimizer is at a particular

point that we decide.

We note the method is called Mirror Descent because of its dual formulation in which one

can see that the method is performing (projected) GD on the dual space, similarly to (2.2.9).

Note that Mirror Descent (MD) in the offline setting was designed before FTRL. We will discuss

in Section 2.6.1 a relationship between FTRL and MD when applied to convex optimization.

2.3 Nemirovski’s Quasi-accelerated gradient descent

The Conjugate Gradient Descent method (CGD) is where research on acceleration started.

It is a method designed for the minimization of a quadratic function. Its geometrical analysis

inspired the first (quasi-)accelerated method for general convex optimization (Nemirovski, 1982a;

Nemirovski, 1982b; Nemirovski and Yudin, 1983a). In the sequel, we will prove convergence for

the CGD method and its relation to Nemirovski’s accelerated gradient descent, that uses a

plane search and then an improvement that uses a line search only. This section is adapted

from the English translation (Nemirovski, 1982a) of the original work, where we have changed

the exposition and the proof to make it more accessible. The connection between CGD and

acceleration has been rediscovered from different points of view in (Karimi and Vavasis, 2016;

Diakonikolas and Orecchia, 2019a). For the purposes of this section we will only need to know

that the CGD method is designed to optimize functions of the form 𝑓(𝑥) = 1
2𝑥

⊤𝐴𝑥− 𝑏⊤𝑥, with
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𝐴 ≻ 0 and that, starting at an arbitrary point 𝑥0, it will iteratively compute a point 𝑥𝑖 satisfying

it is the minimizer of 𝑓 on the affine plane 𝑥0 +
∑︀𝑖−1

𝑘=1 𝜂𝑘∇𝑓(𝑥𝑘) for 𝜂𝑘 ∈ R. We note that CGD

satisfies a stronger guarantee than the one we prove below. In the general guarantee, the error

at a given time step 𝑇 is given by an optimal value over the set of polynomials of degree 𝑇 , and

the analysis of its worse-case convergence relies on showing that with Chebyshev polynomials

of the first kind we achieve the rate 𝑂(1/𝑇 2). See (Nocedal and Wright, 2006, chap. 5) for a

proof. Chebyshev polynomials are classically linked to acceleration in this way and in Chapter 5

we show we can combine this fact with a bandit algorithm in order to solve our decentralized

cooperative bandit problem. Note there are other kinds of acceleration by means of interpolation,

like Anderson’s acceleration (Walker and Ni, 2011), that are beyond the scope of this chapter.

Before we present the proof, we introduce a sequence {𝜂𝑖}𝑇𝑖=0 that will appear in most accel-

erated methods presented in this chapter. Define

𝜂0 = 0, and 𝜂2𝑖 = 𝜂2𝑖−1 + 𝜂𝑖 =

𝑖∑︁
𝑗=1

𝜂𝑗 for 𝑖 ≥ 1. (2.3.1)

We have that {𝜂2𝑖 }𝑇𝑖=1 = {
∑︀𝑖

𝑗=1 𝜂𝑗}𝑇𝑖=1 dominates the sequence {
∑︀𝑖

𝑗=0 𝜉𝑗}𝑇𝑖=1, for 𝜉𝑗 = (𝑗 + 1)/2

since 𝜉2𝑖 /
∑︀𝑖

𝑗=0 𝜉𝑗 < 1. Thus,

𝜂2𝑖 =
𝑖∑︁

𝑗=1

𝜂𝑖 ≥
𝑖∑︁

𝑗=0

𝜉𝑗 =
(𝑖+ 1)(𝑖+ 2)

4
. (2.3.2)

Note that the definition of 𝜂𝑖 is implicit and that solving the quadratic equation we can also

define it as 𝜂𝑖 = (1 +
√︁

1 + 4𝜂2𝑖−1)/2. Now we are ready to analyze CGD. In this section we use

‖ · ‖ for the norm
√︀
⟨·, ·⟩ in a Hilbert space.

Proof of convergence of Conjugate Gradient Descent. Let 𝑓(𝑥) = 1
2𝑥

⊤𝐴𝑥−𝑏⊤𝑥. Assume

𝐿 < 𝐴 ≻ 0, i.e., 𝑓 is strictly convex and 𝐿-smooth. Let 𝑥* be the minimizer of 𝑓 and let 𝑥0, 𝑥1, . . .

be the points the CGD method computes. The convergence rate comes from the three following

facts on the iterates:

(CG1) ⟨∇𝑓(𝑥𝑖), 𝑥𝑖 − 𝑥0⟩ = 0,

(CG2) ⟨∇𝑓(𝑥𝑖),∇𝑓(𝑥𝑗)⟩ = 0, if 𝑖 ̸= 𝑗,

(CG3) 𝑓(𝑥𝑖) ≤ 𝑓(𝑥𝑖−1)− 1
2𝐿‖∇𝑓(𝑥𝑖−1)‖2.

All of them follow easily from the definition of 𝑥𝑖 as the minimizer of 𝑓 on the affine space

𝑥0 +
∑︀𝑖−1

𝑘=1 𝜂𝑘∇𝑓(𝑥𝑘) for parameters 𝜂𝑘 ∈ R. Indeed, (CG2) is straightforward, (CG1) is true

due to (CG2) and the fact that 𝑥𝑖 − 𝑥0 is a linear combination of {∇𝑓(𝑥𝑗)}𝑖−1
𝑗=1. (CG3) holds

since by definition of 𝑥𝑖 and by smoothness we have 𝑓(𝑥𝑖) ≤ 𝑓(𝑥𝑖−1 − 1
𝐿∇𝑓(𝑥𝑖−1)) ≤ 𝑓(𝑥𝑖−1)−

1
2𝐿‖∇𝑓(𝑥𝑖−1)‖2.

Observe that the following holds

𝑓(𝑥𝑖)− 𝑓(𝑥*)
1
≤ ⟨∇𝑓(𝑥𝑖), 𝑥𝑖 − 𝑥*⟩

2
= ⟨∇𝑓(𝑥𝑖), 𝑥0 − 𝑥*⟩, (2.3.3)
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by convexity in 1 and (CG1) in 2 . Adding up (2.3.3) weighted by 𝜂𝑖/‖𝑥0−𝑥*‖ for 𝑖 = 1, . . . , 𝑇

we obtain 1 below

1

‖𝑥0 − 𝑥*‖

𝑇∑︁
𝑖=1

𝜂𝑖(𝑓(𝑥𝑖)− 𝑓(𝑥*))
1
≤ 1

‖𝑥0 − 𝑥*‖
⟨
𝑇∑︁
𝑖=1

𝜂𝑖∇𝑓(𝑥𝑖), 𝑥0 − 𝑥*⟩
2
≤ ‖

𝑇∑︁
𝑖=1

𝜂𝑖∇𝑓(𝑥𝑖)‖

3
=

⎯⎸⎸⎷ 𝑇∑︁
𝑖=1

𝜂2𝑖 ‖∇𝑓(𝑥𝑖)‖
2

4
≤

⎯⎸⎸⎷2𝐿
𝑇∑︁
𝑖=1

𝜂2𝑖 [(𝑓(𝑥𝑖)− 𝑓(𝑥*))− (𝑓(𝑥𝑖+1)− 𝑓(𝑥*))]

5
≤

⎯⎸⎸⎷2𝐿
𝑇∑︁
𝑖=1

(𝑓(𝑥𝑖)− 𝑓(𝑥*))(𝜂2𝑖 − 𝜂2𝑖−1)
6
=

⎯⎸⎸⎷2𝐿
𝑇∑︁
𝑖=1

𝜂𝑖(𝑓(𝑥𝑖)− 𝑓(𝑥*)),

(2.3.4)

and then 2 is Cauchy-Schwarz, 3 holds by (CG2), and 4 follows by (CG3). We used 𝜂0 = 0

and −𝜂2𝑇 (𝑓(𝑥𝑇+1)− 𝑓(𝑥*)) ≤ 0 in 5 , and 6 uses 𝜂2𝑖 = 𝜂2𝑖−1 + 𝜂𝑖. Finally:

𝑓(𝑥𝑇 )− 𝑓(𝑥*) =
∑︀𝑇

𝑖=1 𝜂𝑖
𝜂2𝑇

(𝑓(𝑥𝑇 )− 𝑓(𝑥*))
1
≤
∑︀𝑇

𝑖=1 𝜂𝑖(𝑓(𝑥𝑖)− 𝑓(𝑥*))
𝜂2𝑇

2
≤ 8𝐿‖𝑥0 − 𝑥*‖2

(𝑇 + 1)(𝑇 + 2)
,

where 1 uses that the method is monotonous by definition and 2 comes from simplifying (2.3.4)

and the bound (2.3.2) on 𝜂2𝑇 .

Algorithm 1 Quasi-accelerated gradient descent
Input: An 𝐿-smooth wrt ‖ · ‖, convex, differentiable 𝑓 : R𝑛 → R. Initial point 𝑥0. Sequence
{𝜂𝑘}∞𝑘=0 in (2.3.1).

Output: 𝑥𝑇 such that 𝑓(𝑥𝑇 )− 𝑓(𝑥*) = 𝑂(𝐿‖𝑥0−𝑥
*‖2

𝑇 2 ). Searches can be approximated to obtain
the same guarantee after 𝑂(𝑇 log(𝑇 )) gradient evaluations.

1: for 𝑘 ← 0 to 𝑇 − 1 do ◇ Plane search version
2: 𝑥𝑖 ← argmin{𝑓(𝑥) : 𝑥 ∈ 𝑃𝑖}, where 𝑃𝑖 is the plane such that 𝑥0, 𝑥𝑖−1 − 1

𝐿∇𝑓(𝑥𝑖−1) ∈ 𝑃𝑖
and 𝑃𝑖 is parallel to 𝑞𝑖−1 =

∑︀𝑖−1
𝑗=1 𝜂𝑗∇𝑓(𝑥𝑗).

3: end for

4: for 𝑘 ← 0 to 𝑇 − 1 do ◇ Line search version
5: 𝑥𝑖 ← argmin{𝑓(𝑥) : 𝑥 ∈ Λ𝑖}, where Λ𝑖 is the line such that
𝑥𝑖−1 − 1

𝐿∇𝑓(𝑥𝑖−1), 𝑥0 −
∑︀𝑖−1

𝑗=1

𝜂𝑗
𝐿∇𝑓(𝑥𝑗) ∈ Λ𝑖. ◇ Note Λ𝑖 ⊂ 𝑃𝑖.

6: end for

Nemirovski observed that within the previous proof, (CG2) was not used as such, but a weak

version of it. We only needed ‖
∑︀𝑇

𝑖=1 𝜂𝑖∇𝑓(𝑥𝑖)‖2 =
∑︀𝑇

𝑖=1 𝜂
2
𝑖 ‖∇𝑓(𝑥𝑖)‖2 which is also true if we

only impose

⟨∇𝑓(𝑥𝑖),
𝑖−1∑︁
𝑗=1

𝜂𝑗∇𝑓(𝑥𝑗)⟩ = 0, for all 𝑖 ≥ 1. (2.3.5)

This condition can be ensured for every general convex 𝐿-smooth function. It is enough to

find, at the 𝑖-th iteration, the point 𝑥𝑖 that minimizes 𝑓 on the plane passing through 𝑥0,

𝑥𝑖−1 − 1
𝐿∇𝑓(𝑥𝑖−1) and that is and parallel to the vector 𝑞𝑖−1 =

∑︀𝑖−1
𝑗=1 𝜂𝑗∇𝑓(𝑥𝑗). Indeed, by

optimality, ∇𝑓(𝑥𝑖) will be orthogonal to any vector parallel to the plane. In particular it will
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be orthogonal to 𝑥𝑖 − 𝑥0 and to 𝑞𝑖−1, ensuring (CG1) and (2.3.5). Besides, we still have 𝑓(𝑥𝑖) ≤
𝑓(𝑥𝑖−1 − 1

𝐿∇𝑓(𝑥𝑖−1)) ≤ 𝑓(𝑥𝑖−1) − 1
2𝐿‖∇𝑓(𝑥𝑖−1)‖2 by smoothness, so (CG3) also holds. Note

that the proof of CGD only used convexity despite that we assumed strict convexity (i.e., 𝐴 ≻ 0).

CGD uses strict convexity in the definition of the algorithm in order to guarantee the three CGD

conditions, but it does not use it in the proof. Thus, the same convergence proof as before follows

for general convex optimization.

The only new algorithmic operation introduced was a two dimensional minimization per step.

Nemirovski later showed that the 2-dimensional minimization can be solved approximately so

the convergence still follows and the number of gradient oracle calls to reach a given accuracy is

𝑂(𝑇 ln𝑇 ) if the number of iterations needed with the exact plane search was 𝑇 . This algorithm

was later improved to require a line search only (Nemirovski and Yudin, 1983a). The line

is contained within the previous plane. A priori the proof relies on an algebraic trick and

the geometrical intuition that CGD provides is lost. The argument is the following: let 𝑦𝑖
def
=

𝑥𝑖−1 − 1
𝐿∇𝑓(𝑥𝑖−1) be a gradient point and define 𝑥𝑖 as a point that minimizes 𝑓 along the line

Λ𝑖(𝜆) = 𝑦𝑖 + 𝜆

⎛⎝−𝑦𝑖 + 𝑥0 −
𝑖−1∑︁
𝑗=1

𝜂𝑗
𝐿
∇𝑓(𝑥𝑗)

⎞⎠ = (1− 𝜆)𝑦𝑖 + 𝜆

⎛⎝𝑥0 − 𝑖−1∑︁
𝑗=1

𝜂𝑗
𝐿
∇𝑓(𝑥𝑗)

⎞⎠ , (2.3.6)

for 𝜆 ∈ R and let 𝜆𝑖 be the value used to define 𝑥𝑖.

Proof of Nemirovski’s quasi-AGD convergence rates (line search version).

We bound the gap in a similar way to the previous case that used a plane search except that

now we cannot remove ⟨∇𝑓(𝑥𝑖), 𝑥𝑖 − 𝑥0⟩:

𝑇∑︁
𝑖=1

𝜂𝑖(𝑓(𝑥𝑖)− 𝑓(𝑥*))
1
≤

𝑇∑︁
𝑖=1

𝜂𝑖(⟨∇𝑓(𝑥𝑖), 𝑥𝑖 − 𝑥0⟩+ ⟨∇𝑓(𝑥𝑖), 𝑥0 − 𝑥*⟩)

2
≤

⎛⎝ 𝑇∑︁
𝑖=1

1

2𝐿
‖𝜂𝑖∇𝑓(𝑥𝑖)‖2 −

1

2𝐿
‖

𝑇∑︁
𝑗=1

𝜂𝑗∇𝑓(𝑥𝑗)‖2
⎞⎠+

⎛⎝ 1

2𝐿
‖

𝑇∑︁
𝑗=1

𝜂𝑗∇𝑓(𝑥𝑗)‖2 +
𝐿

2
‖𝑥0 − 𝑥*‖2

⎞⎠
3
≤

𝑇∑︁
𝑖=1

𝜂𝑖(𝑓(𝑥𝑖)− 𝑓(𝑥*))− 𝜂2𝑇 (𝑓(𝑥𝑇+1)− 𝑓(𝑥*)) +
𝐿

2
‖𝑥0 − 𝑥*‖2

(2.3.7)

where 1 uses convexity and 3 here cancels two terms and then the rest is the same as 4 5, 5

and 6 in (2.3.4) but without dropping −𝜂2𝑇 (𝑓(𝑥𝑇+1)− 𝑓(𝑥*)). Inequality 2 holds by Cauchy-

Schwarz and Young’s inequality ⟨𝑣, 𝑤⟩ ≤ 1
2‖𝑣‖

2 + 1
2‖𝑤‖

2 on the second summand and for the

5Note (CG3) is still satisfied because 𝑦𝑖 is on the line Λ𝑖 where we search.
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first summand we used the inequality

𝑇∑︁
𝑖=1

𝜂𝑖⟨∇𝑓(𝑥𝑖), 𝑥𝑖 − 𝑥0⟩
1
=

𝑇∑︁
𝑖=1

𝜂𝑖⟨∇𝑓(𝑥𝑖), 𝑦𝑖 − 𝑥0⟩
2
=

1

𝐿

𝑇∑︁
𝑖=1

⟨𝜂𝑖∇𝑓(𝑥𝑖),−
𝑖−1∑︁
𝑗=1

𝜂𝑗∇𝑓(𝑥𝑗)⟩

3
=

𝑇∑︁
𝑖=1

⎛⎝ 1

2𝐿
‖𝜂𝑖∇𝑓(𝑥𝑖)‖2 +

1

2𝐿
‖
𝑖−1∑︁
𝑗=1

𝜂𝑗∇𝑓(𝑥𝑗)‖2 −
1

2𝐿
‖

𝑖∑︁
𝑗=1

𝜂𝑗∇𝑓(𝑥𝑗)‖2
⎞⎠

4
=

𝑇∑︁
𝑖=1

1

2𝐿
‖𝜂𝑖∇𝑓(𝑥𝑖)‖2 −

1

2𝐿
‖

𝑇∑︁
𝑗=1

𝜂𝑗∇𝑓(𝑥𝑗)‖2,

(2.3.8)

where 1 uses that by optimality ∇𝑓(𝑥𝑖) is perpendicular to the line Λ𝑖, and both 𝑥𝑖 and

𝑦𝑖 are on Λ𝑖. Similarly, 2 adds the direction in the definition of Λ𝑖. We used the identity

−2⟨𝑣, 𝑤⟩ = ‖𝑣‖2 + ‖𝑤‖2−‖𝑣+𝑤‖2 in 3 , and we telescoped in 4 . We obtain from (2.3.7) that

𝑓(𝑥𝑇+1)− 𝑓(𝑥*) ≤ 𝐿‖𝑥0−𝑥*‖2
2𝜂2𝑇

. We already saw that 𝜂2𝑖 is Ω(𝑖2) so this concludes the analysis.

Nemirovski and Yudin (1983a) also proved that an implementation with an approximate line

search obtains an 𝜀-minimizer in 𝑂(𝑇 ln𝑇 ) oracle calls if the algorithm with the exact line search

reaches the same desired accuracy in 𝑇 iterations.

2.4 Nesterov’s Accelerated Gradient Descent

The algorithms in the previous section worked in the unconstrained setting and with smooth-

ness defined by a norm in a Hilbert space. It is an optimal algorithm up to log factors and

constants. Later, Nesterov (1983) provided a method that is optimal, up to constants. In

this work, Nesterov (1983) provides a more general result: the algorithm allows for constrained

minimization in a convex set 𝒳 , but the function must be defined over all the space since the

algorithm may query points outside of 𝒳 . This paper also contains an accelerated algorithm for

the strongly convex case. Later, Nesterov (1998) generalizes this method so the algorithm does

not need to query gradients outside of 𝒳 . Further, Nesterov (2005) generalizes it so it works for

a smooth function with respect to an arbitrary norm. This last version also contains an FTRL

subalgorithm. The pseudocode of these three methods is in Algorithms 2, 3 and 4, respectively.

We are writing equivalent formulations of the algorithms, which are just slightly different from

the original ones. Some of the algorithms originally contained simpler learning rates, just for

convenience, and yielded slightly worse results by a constant. The algorithms require 𝜓 to be

1-strongly convex just for simplicity. We can use 𝜎-strongly convex maps and change the learning

rate accordingly to obtain the same algorithms.

We note that the alternative choice of 𝑦𝑘+1 in Line 9 of Algorithm 4, despite of being analogous

to the one in Algorithm 3, does not appear in its corresponding work. In fact, the author provides

a method that requires an MD step per iteration, on top of the FTRL iteration, in order to avoid

the optimization subproblem of the gradient descent step. The trick in Line 9 appears explicitly
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Algorithm 2 AGD, version in (Nesterov, 1983)

Input: A Hilbert space ℰ with norm ‖·‖ =
√︀
⟨·, ·⟩. An 𝐿-smooth wrt ‖·‖, convex, differentiable

𝑓 : ℰ → R. Optimization is over 𝒳 ⊆ ℰ but 𝑥𝑘 can be outside of 𝒳 . Initial points
𝑥0 = 𝑦0 = 𝑦−1 ∈ 𝒳 . Sequence {𝜂𝑘}∞𝑘=0 in (2.3.1).

Output: 𝑦𝑇 ∈ 𝒳 such that 𝑓(𝑦𝑇 )− 𝑓(𝑥*) = 𝑂(𝐿‖𝑦0−𝑥
*‖2

𝑇 2 ).
1: for 𝑘 ← 0 to 𝑇 − 1 do
2: 𝑎𝑘+1 = 𝜂𝑘+1/𝐿
3: 𝑥𝑘+1 ← 𝑦𝑘 + (𝑎𝑘 − 1)(𝑦𝑘 − 𝑦𝑘−1)/𝑎𝑘+1

4: 𝑦𝑘+1 ← argmin𝑦∈𝒳
{︀
𝑓(𝑥𝑘+1) + ⟨∇𝑓(𝑥𝑘+1), 𝑦 − 𝑥𝑘+1⟩+ 𝐿

2 ‖𝑦 − 𝑥𝑘+1‖2
}︀

5: end for

in (Cohen, Diakonikolas, and Orecchia, 2018) and it could have been independently developed

before. Algorithm 3 appears in (Nesterov, 1998) applying to Hilbert spaces, and in its full

generality using Bregman divergences in (Auslender and Teboulle, 2006; Tseng, 2008; Allen-Zhu

and Orecchia, 2017) although this extension is very similar to the one in Algorithm 4, which

appeared before in (Nesterov, 2005). Nonetheless, to the best of our knowledge (Auslender

and Teboulle, 2006) is the first reference that analyzes the MD version of AGD with Bregman

divergences, (Tseng, 2008) provides a unified analysis for the three methods and their extensions

to composite optimization and (Allen-Zhu and Orecchia, 2017) provides an intuitive analysis

showing the algorithm consists of an online learning subalgorithm with an instantaneous regret

that is balanced by a GD step.

Algorithm 3 AGD where the MD algorithm estimates regularized lower bounds on 𝑓 .
Input: Convex, differentiable 𝑓 : 𝒳 → R that is 𝐿-smooth wrt an arbitrary norm ‖ · ‖. Initial

points 𝑥0 = 𝑦0 = 𝑧′0 ∈ 𝒳 , and 1-strongly convex map 𝜓 : 𝒳 → R wrt ‖ · ‖. Sequence {𝜂𝑘}∞𝑘=0

in (2.3.1).
Output: 𝑦𝑇 ∈ 𝒳 such that 𝑓(𝑦𝑇 )− 𝑓(𝑥*) = 𝑂(𝐿‖𝑦0−𝑥

*‖2
𝑇 2 ).

1: for 𝑘 ← 0 to 𝑇 − 1 do
2: 𝑎𝑘+1 = 𝜂𝑘+1/𝐿
3: 𝜏𝑘 = 1/𝑎𝑘+1𝐿 = 1/𝜂𝑘+1

4: 𝑥𝑘+1 ← 𝜏𝑘𝑧
′
𝑘 + (1− 𝜏𝑘)𝑦𝑘

5: Any of the following two (they are equivalent MD formulations):
6: 𝑧′𝑘+1 ← argmin𝑧∈𝒳

{︁
⟨∇𝑓(𝑥𝑘+1), 𝑧⟩+ 1

𝑎𝑘+1
𝐷𝜓(𝑧, 𝑧

′
𝑘)
}︁

7: 𝑧𝑘+1 = ∇𝜓(𝑧′𝑘)− 𝑎𝑘+1∇𝑓(𝑥𝑘+1); 𝑧′𝑘+1 ← ∇𝜓*(𝑧𝑘+1)
8: Any of the following two (GD updates):
9: 𝑦𝑘+1 ← 𝜏𝑘𝑧

′
𝑘+1 + (1− 𝜏𝑘)𝑦𝑘 ◇ Does not require argmin

10: 𝑦𝑘+1 ← argmin𝑦∈𝒳
{︀
⟨∇𝑓(𝑥𝑘+1), 𝑦⟩+ 𝐿

2 ‖𝑥𝑘+1 − 𝑦‖2
}︀
◇ Better(unquantified) per-step

guarantee
11: end for

We now see that in the unconstrained case, this method can be viewed as the one in the

previous section, but with a closed form expression for selecting a particular point in the line

where the previous method was doing a search. It is easy to prove that the three algorithms are

the same in the unconstrained case with the 2-norm if we select 𝜓(𝑥) = 1
2‖𝑥−𝑥0‖

2
2 as regularizer.

The version for selecting 𝑦𝑘+1 does not matter since both options also become equivalent in this
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Algorithm 4 AGD where the FTRL algorithm estimates regularized lower bounds on 𝑓 .
Input: Convex, differentiable 𝑓 : 𝒳 → R that is 𝐿-smooth wrt an arbitrary norm ‖ · ‖. Initial

points 𝑥0 = 𝑦0 = 𝑧′0 ∈ 𝒳 , 𝑧0 = ∇𝜓(𝑥0), and 1-strongly convex map 𝜓 : 𝒳 → R wrt ‖ · ‖.
Sequence {𝜂𝑘}∞𝑘=0 in (2.3.1).

Output: 𝑦𝑇 ∈ 𝒳 such that 𝑓(𝑦𝑇 )− 𝑓(𝑥*) = 𝑂(𝐿‖𝑦0−𝑥
*‖2

𝑇 2 ).
1: for 𝑘 ← 0 to 𝑇 − 1 do
2: 𝑎𝑘+1 = 𝜂𝑘+1/𝐿
3: 𝜏𝑘 = 1/𝑎𝑘+1𝐿 = 1/𝜂𝑘+1

4: 𝑥𝑘+1 ← 𝜏𝑘𝑧
′
𝑘 + (1− 𝜏𝑘)𝑦𝑘

5: Any of the following two (they are equivalent FTRL formulations):
6: 𝑧′𝑘+1 ← argmin𝑧∈𝒳

{︁∑︀𝑘
𝑖=0 𝑎𝑖+1⟨∇𝑓(𝑥𝑖+1), 𝑧⟩+𝐷𝜓(𝑧, 𝑥0)

}︁
7: 𝑧𝑘+1 = 𝑧𝑘 − 𝑎𝑘+1∇𝑓(𝑥𝑘+1); 𝑧′𝑘+1 ← ∇𝜓*(𝑧𝑘+1)
8: Any of the following two (GD updates):
9: 𝑦𝑘+1 ← 𝜏𝑘𝑧

′
𝑘+1 + (1− 𝜏𝑘)𝑦𝑘 ◇ Does not require argmin

10: 𝑦𝑘+1 ← argmin𝑦∈𝒳
{︀
⟨∇𝑓(𝑥𝑘+1), 𝑦⟩+ 𝐿

2 ‖𝑥𝑘+1 − 𝑦‖2
}︀
◇ Better(unquantified) per-step

guarantee
11: end for

setting. We will not go over the proof of this fact, but note that, MD and FTRL are identical

in the unconstrained case, so Algorithm 3 and Algorithm 4 are trivially equivalent in this case.

Using this fact we can see that indeed Algorithm 3 is selecting the next point as a particular

point in the line Λ𝑖(𝜆) in (2.3.6). Indeed, we can use any of the three versions of AGD for the

comparison and we will use Algorithm 4. We already saw in (2.2.7) that FTRL with our 𝜓 and

weighted losses {𝑎𝑖+1∇𝑓(𝑥𝑖+1)}𝑘−2
𝑖=0 } predicts the point

𝑧′𝑘−1 = 𝑥0 −
𝑘−2∑︁
𝑖=0

𝑎𝑖+1∇𝑓(𝑥𝑖+1) = 𝑥0 −
𝑘−1∑︁
𝑖=1

𝜂𝑖
𝐿
∇𝑓(𝑥𝑖).

This is one of the two points in the line Λ𝑖(𝜆) and the other is precisely 𝑦𝑘−1. One can prove that

the precise convex combination 𝑥𝑘 = 𝜏𝑘−2𝑧
′
𝑘−1 + (1− 𝜏𝑘−2)𝑦𝑘−1 is enough to achieve accelerated

rates.

The original proof in (Nesterov, 1983) uses an argument through a potential function that

it is shown it does not increase with iterations. In the other two algorithms, a similar but

more intuitive technique is used in which one can appreciate the algorithm is building lower

bounds on the regularized function and that 𝑧′𝑘 is the minimum of the regularized lower bound.

The arguments using potentials use the potential Φ𝑘 = 𝐴𝑘(𝑓(𝑥𝑘) − 𝑓(𝑥*)) +𝐷𝜓(𝑧
′
𝑘, 𝑥

*), where

𝐴𝑘
def
=
∑︀𝑘

𝑖=1 𝑎𝑘, and show Φ𝑘+1 ≤ Φ𝑘 in order to conclude

𝑓(𝑥𝑇 )− 𝑓(𝑥*) ≤
Φ𝑇
𝐴𝑇
≤ Φ0

𝐴𝑇
=
𝐴0(𝑓(𝑥0)− 𝑓(𝑥*)) +𝐷𝜓(𝑧

′
0, 𝑥

*)

𝐴𝑇
=
𝐷𝜓(𝑧

′
0, 𝑥

*)

𝐴𝑇
.

The estimate-sequences technique consists of defining lower bound estimates 𝜑𝑘 on the regularized

objective. More concretely, these estimates satisfy

𝜑𝑘(𝑥) ≤ (1− 𝜆𝑘)𝑓(𝑥) + 𝜆𝑘𝜑0(𝑥),
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where 𝜆𝑘 > 0 is a parameter that tends to 0 when 𝑘 → ∞ and 𝜑0 is the initial regularization.

Then, the algorithm finds a point 𝑦𝑘 such that 𝑓(𝑦𝑘) ≤ min𝑥∈𝒳 𝜑𝑘(𝑥) so that

𝑓(𝑦𝑘) ≤ min
𝑥∈𝒳

𝜑𝑘(𝑥) ≤ min
𝑥∈𝒳
{(1− 𝜆𝑘)𝑓(𝑥) + 𝜆𝑘𝜑0(𝑥)} ≤ (1− 𝜆𝑘)𝑓(𝑥*) + 𝜆𝑘𝜑0(𝑥

*),

or equivalently

𝑓(𝑦𝑘)− 𝑓(𝑥*) ≤ 𝜆𝑘(𝜑0(𝑥*)− 𝑓(𝑥*))→ 0.

The regularized lower bounds can be built with the online learning algorithms and then the rest

of the algorithm ensures finding 𝑦𝑘 such that 𝑓(𝑦𝑘) ≤ min𝑥∈𝒳 𝜑𝑘(𝑥). We will not develop these

two arguments, as we will go over similar computations in the following sections, but presented

from other points of view.

2.5 Linear Coupling

In this section we provide a proof of accelerated convergence for Algorithm 3 based on (Allen-

Zhu and Orecchia, 2017) which motivates the analysis using MD as in (2.2.4). The analysis is in

fact similar to the estimate sequences technique by Nesterov (1998) but Allen-Zhu and Orecchia

(2017) present a different point of view in which one can see that the online learning algorithm

is controlling the regret, and the per-iterate regret is precisely proportional to the progress the

GD algorithm makes, so one can compensate one with the other (high regret is balanced with

high GD progress and if the GD progress is low, then the instantaneous regret is also low). The

authors argue that after performing the GD and the MD steps, one can couple both iterates (i.e.,

compute a convex combination) so that the weights in the combination balance this trade-off.

This point of view allows for using weaker versions of online learning algorithms (for instance,

relaxing the convexity condition) or for the exploitation of different descent conditions a structure

our problem may present.

We will first prove that indeed the regret coming from MD can be bounded by the progress

of the descent update plus some Bregman divergence terms. Since 𝑦𝑘+1 is the GD point, the

progress is expressed as 𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1).

Lemma 2.5.1 (MD regret and GD progress). If 𝜏𝑘 = 1
𝑎𝑘+1𝐿

, then the iterates of Algorithm 3

satisfy that for every 𝑢 ∈ 𝒳 ,

𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧
′
𝑘 − 𝑢⟩ ≤ 𝑎2𝑘+1𝐿 (𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1)) +𝐷(𝑢, 𝑧′𝑘)−𝐷(𝑢, 𝑧′𝑘+1).

Besides, the same condition holds regardless of the value of 𝜏𝑘 if 𝒳 = R𝑛 and 𝑦𝑘+1 is chosen

according to the gradient step in Line 10.

Proof We start by taking the first part of the MD guarantee in Lemma 2.2.8.1:

𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧
′
𝑘 − 𝑢⟩ ≤ ⟨𝑎𝑘+1∇𝑓(𝑥𝑘+1), 𝑧

′
𝑘 − 𝑧′𝑘+1⟩ −

1

2
‖𝑧′𝑘 − 𝑧′𝑘+1‖2 +𝐷𝜓(𝑢, 𝑧

′
𝑘)−𝐷𝜓(𝑢, 𝑧

′
𝑘+1)
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and we bound the first two summands. Assume first that we defined 𝑦𝑘+1
def
= 𝜏𝑘𝑧

′
𝑘+1+(1−𝜏𝑘)𝑦𝑘 ∈

𝒳 so that 𝑥𝑘+1 − 𝑦𝑘+1 = (𝜏𝑘𝑧
′
𝑘 + (1− 𝜏𝑘)𝑦𝑘)− (𝜏𝑘𝑧

′
𝑘+1 + (1− 𝜏𝑘)𝑦𝑘) = 𝜏𝑘(𝑧

′
𝑘 − 𝑧′𝑘+1). That is,

so 𝑥𝑘+1 − 𝑦𝑘+1 is proportional to 𝑧′𝑘 − 𝑧′𝑘+1, which allows for using smoothness to complete our

task:

⟨𝑎𝑘+1∇𝑓(𝑥𝑘+1), 𝑧
′
𝑘 − 𝑧′𝑘+1⟩ −

1

2
‖𝑧′𝑘 − 𝑧′𝑘+1‖2 = ⟨

𝑎𝑘+1

𝜏𝑘
∇𝑓(𝑥𝑘+1), 𝑥𝑘+1 − 𝑦𝑘+1⟩ −

1

2𝜏𝑘2
‖𝑥𝑘+1 − 𝑦𝑘+1‖2

1
= 𝑎2𝑘+1𝐿

(︂
⟨∇𝑓(𝑥𝑘+1), 𝑥𝑘+1 − 𝑦𝑘+1⟩ −

𝐿

2
‖𝑥𝑘+1 − 𝑦𝑘+1‖2

)︂
2
≤ 𝑎2𝑘+1𝐿(𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1)),

(2.5.1)

where 1 follows by the definition of 𝜏𝑘 = 1/𝑎𝑘+1𝐿 which is chosen so the resulting expression is

in the form of the smoothness inequality, which we use in 2 . Now if we chose 𝑦𝑘 as coming from a

gradient step then we would only be increasing the right hand side of the previous guarantee and

thus we can also use it, or any point with a better guarantee than 𝑦𝑘+1 given by the smoothness

assumption.

In the unconstrained case we can indeed remove the dependence on 𝜏𝑘 if we define 𝑦𝑘+1 =

𝑥𝑘+1− 1
𝐿∇𝑓(𝑥𝑘+1), i.e., as coming the gradient step. This is because the left hand side in (2.5.1)

can be bounded, as we did in Lemma 2.2.8.1, by 𝑎2𝑘+1‖∇𝑓(𝑥𝑘+1)‖2* and this is proportional to

the progress GD makes as derived by smoothness:

𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1) ≥ ⟨∇𝑓(𝑥𝑘), 𝑥𝑘+1 − 𝑦𝑘+1⟩ −
𝐿

2
‖𝑥𝑘+1 − 𝑦𝑘+1‖2 =

1

2𝐿
‖∇𝑓(𝑥𝑘+1)‖2*.

Indeed, applying Lemma 2.2.8.1 to 1 and the above to 2 we obtain

𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧
′
𝑘 − 𝑢⟩

1
≤

𝑎2𝑘+1

2
‖∇𝑓(𝑥𝑘+1)‖2* +𝐷𝜓(𝑢, 𝑧

′
𝑘)−𝐷𝜓(𝑢, 𝑧

′
𝑘+1)

2
≤ 𝑎2𝑘+1𝐿 (𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1)) +𝐷(𝑢, 𝑧′𝑘)−𝐷(𝑢, 𝑧′𝑘+1).

(2.5.2)

The second part of the lemma gives an extra degree of freedom in the unconstrained case,

that allows for generalizations, as we will discuss in Remark 2.5.5.

Remark 2.5.2. Defining 𝑦𝑘+1 as the gradient descent point essentially provides us with a point

with a lower objective value, which is always better in terms of guarantees. In terms of compu-

tational time it could be more expensive in the constrained case due to the projection involved.

And if we were going to design a similar algorithm but using stochastic gradients it is intuitive

that we should not go farther from 𝑥𝑘 than needed in order to guarantee our convergence since

we could be amplifying the error in our gradient. In fact, (Cohen, Diakonikolas, and Orecchia,

2018) studied theoretically the algorithm that defines 𝑦𝑘+1 as a convex combination of 𝑦𝑘 and

𝑧′𝑘+1 under noise (but in the case in which FTRL is used as opposed to MD) and also compared
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it empirically with the choice of defining 𝑦𝑘+1 as the gradient step point and observed the former

performed better.

We now show the coupling lemma. The instantaneous regret can be decomposed into the

MD regret and another term, which presents a constant that we can tune to obtain a telescoping

sum in the analysis. This constant depends on how far or close we place the next iterate 𝑥𝑘+1

from the MD point 𝑧′𝑘 and from the GD point 𝑦𝑘.

Lemma 2.5.3 (Coupling). The iterates of Algorithm 3 satisfy, for all 𝑢 ∈ 𝒳 :

𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑥𝑘+1 − 𝑢⟩ ≤ 𝐶(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘+1)) + 𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧
′
𝑘 − 𝑢⟩.

where 𝐶 =
(1−𝜏𝑘)𝑎𝑘+1

𝜏𝑘
is a constant that ranges in [0,∞) depending on the value of 𝜏𝑘 ∈ (0, 1].

Proof

𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑥𝑘+1 − 𝑢⟩
1
= 𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑥𝑘+1 − 𝑧′𝑘⟩+ 𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧

′
𝑘 − 𝑢⟩

2
=

(1− 𝜏𝑘)𝑎𝑘+1

𝜏𝑘
⟨∇𝑓(𝑥𝑘+1), 𝑦𝑘 − 𝑥𝑘+1⟩+ 𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧

′
𝑘 − 𝑢⟩

3
≤

(1− 𝜏𝑘)𝑎𝑘+1

𝜏𝑘
(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘+1)) + 𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧

′
𝑘 − 𝑢⟩.

In 1 , we decomposed the instantaneous regret into the part that MD controls (second summand)

and the rest. Because of the definition of 𝑥𝑘+1 as a convex combination of 𝑦𝑘 and 𝑧′𝑘 we can

apply equality 2 and then 3 by convexity.

Now we are ready to prove accelerated convergence rates.

Theorem 2.5.4. If 𝑓(𝑥) is convex and 𝐿-smooth w.r.t. ‖ · ‖ on 𝒳 with a minimizer 𝑥*, and

𝜓 : 𝒳 → R is 1-strongly convex with respect to ‖ · ‖, then Algorithm 3 outputs 𝑦𝑇 satisfying

𝐿𝐷𝜓(𝑥
*, 𝑧′0)

𝜂2𝑇
= 𝑂

(︂
𝐿𝐷𝜓(𝑥

*, 𝑧′0)

𝑇 2

)︂
,

where 𝜂𝑇 is defined by the sequence (2.3.1).

Proof We can derive the theorem from the following inequalities, that hold for all 𝑢 ∈ 𝒳 :

𝑎𝑘+1(𝑓(𝑥𝑘+1)− 𝑓(𝑢))
1
≤ 𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑥𝑘+1 − 𝑢⟩
2
≤ (𝑎2𝑘+1𝐿− 𝑎𝑘+1)(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘+1)) + 𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧

′
𝑘 − 𝑢⟩

3
≤ (𝑎2𝑘+1𝐿− 𝑎𝑘+1)(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘+1)) + 𝑎2𝑘+1𝐿(𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1)) +𝐷(𝑢, 𝑧′𝑘)−𝐷(𝑢, 𝑧′𝑘+1)

4
= 𝑎2𝑘𝐿𝑓(𝑦𝑘)− 𝑎2𝑘+1𝐿𝑓(𝑦𝑘+1) + 𝑎𝑘+1𝑓(𝑥𝑘+1) +𝐷(𝑢, 𝑧′𝑘)−𝐷(𝑢, 𝑧′𝑘+1).

(2.5.3)

Above, 1 uses convexity. 2 uses Lemma 2.5.3 and we used Lemma 2.5.1 in 3 . Note that

33



𝜏𝑘 = 1
𝑎𝑘+1𝐿

is chosen so we can cancel 𝑓(𝑥𝑘+1) in both sides of the inequality after 4 . In

the constrained case we have no other choice, since it is needed by Lemma 2.5.1 but in the

unconstrained case this is the value one wants anyway, in order to telescope. Indeed, we now

have two telescoping sums on the Bregman divergences and on 𝑓 evaluated at the sequence of

𝑦𝑘, if we choose 𝑎2𝑘+1 satisfying 𝑎2𝑘+1𝐿 − 𝑎𝑘+1 = 𝑎2𝑘𝐿 in 4 . This precisely leads to 𝑎𝑘 = 𝜂𝑖/𝐿,

where {𝜂𝑖}∞𝑘=1 is the sequence in (2.3.1). Note that this inequality has the form of the potential

function inequality Φ𝑘+1 ≤ Φ𝑘 we mentioned in Section 2.4 but we obtained it by the observation

of the MD and GD having proportional regret and progress that we balance. Now, adding up

for 𝑘 = 0, . . . , 𝑇 − 1, simplifying, dropping −𝐷𝜓(𝑢, 𝑧
′
𝑇 ) ≤ 0 and using 𝑎0 = 0, we obtain

−
𝑇∑︁
𝑘=1

𝑎𝑘𝑓(𝑢) ≤ −𝑎2𝑇𝐿𝑓(𝑦𝑇 ) +𝐷(𝑢, 𝑧′0).

The sum of the weights on the terms with 𝑓 was the same on both sides of (2.5.3) so now they

must be equal as well, i.e.,
∑︀𝑇

𝑘=1 𝑎𝑘 = 𝑎2𝑇𝐿.6 We obtain the final result by rearranging, setting

𝑢 = 𝑥*, and using the value of 𝑎𝑇 = 𝜂𝑇 /𝐿 = Ω(𝑇 2/𝐿) by (2.3.2).

Remark 2.5.5. In the unconstrained case, we can adapt the previous analysis to work with a

smooth function 𝑓 satisfying a much weaker notion than convexity, namely 𝛾-quasar-convexity,

defined by

𝑓(𝑥)− 𝑓(𝑥*) ≤ 1

𝛾
⟨∇𝑓(𝑥), 𝑥− 𝑥*⟩ for all 𝑥 ∈ R𝑛,

for a minimizer 𝑥* of 𝑓 and parameter 𝛾 ≥ 1. In order to adapt the previous method, we note

that we can use this condition in substitution for 1 in (2.5.3) and then we just need to find a

point 𝑥𝑘+1 in the segment 𝜏𝑘𝑧′𝑘 + (1− 𝜏𝑘)𝑦𝑘, 𝜏𝑘 ∈ [0, 1] such that we have an analogous result to

Lemma 2.5.1 satisfying

1

𝛾
𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑥𝑘+1 − 𝑥*⟩ ≤ 𝐶(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘+1)) +

1

𝛾
𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧

′
𝑘 − 𝑢⟩,

where 𝐶 = 1
𝛾𝑎

2
𝑘+1𝐿−𝑎𝑘+1 so that we can cancel 𝑓(𝑥𝑘+1) on both sides of (2.5.3) as before, since in

that case we can set 𝑎2𝑘+1𝐿/𝛾−𝑎𝑘+1 to 𝑎2𝑘𝐿/𝛾 in order to telescope. This is satisfied by 𝑎𝑘 = 𝜂𝑖𝛾/𝐿

which leads to convergence rates of 𝑂(𝐿𝐷𝜓(𝑥
*, 𝑧′0)/(𝛾𝑇

2)), which is optimal for this class of

problems (Hinder, Sidford, and Sohoni, 2020). Note Lemma 2.5.1 does not need any modification

in the unconstrained case. In the case of unconstrained convex optimization 𝐶 =
(1−𝜏𝑘)𝑎𝑘+1

𝜏𝑘
so

we can obtain any 𝐶 for some value of 𝜏𝑘. But in fact we can obtain the inequality for any 𝐶

even without convexity. Indeed, Hinder, Sidford, and Sohoni (2020) do exactly that by reasoning

that if the condition is not satisfied in any of the ends of the segment, then by a mean value
6Of course, we could have computed these values and actually, we knew this fact from the properties of the

sequence {𝜂𝑖}∞𝑘=1, but this was a nice invariant to compute it too. The fact that the weights are the same on both
sides is only natural since we would expect to have the same inequality if we scale the function by a factor or
otherwise we would be getting free lunch. Similarly, when getting rates of convergence, we must obtain expressions
that are invariant up to scalings on the function or domain. Like 𝐿𝑅/𝜀, or 𝐿/𝜇 or 𝜇𝑅/𝜀, where 𝑅 is the initial
distance to a minimizer. This makes for a is a good sanity check.

34



theorem, a point in the segment must satisfy it, and this point can be approximated with a binary

search due to the smoothness of 𝑓 . Further, the error of this approximation only incurs an extra

log(𝐿/𝜀) factor in the rates, similarly to the line search in Section 2.3. We are seeing again a

recurring trick in high dimensional optimization, which is that solving a constant-dimensional

problem can be done by only adding a log factor to our complexity and it allows for finding points

with some extremal property.

On the other hand, it is not clear how to extend this result to the constrained case. This

technique does not allow for it since 𝜏𝑘 plays a role in Lemma 2.5.1 in such a case. Modifying 𝜏𝑘
to obtain any particular 𝐶 changes the regret coming Lemma 2.5.1 and does not allow to cancel

the 𝑓(𝑥𝑘+1) terms. Intuitively, since the regret is a factor of 1
𝛾 greater, the GD step would need to

be a factor 1
𝛾 longer which in principle could land outside of the constraint set. In Chapter 3, we

prove constrained acceleration for a condition which is between convexity and quasar-convexity

by using a different technique, namely implicit Euler discretization of the continuous accelerated

dynamics. We overview continuous approaches and their discretizations in the next section.

Because of the implicit nature of the algorithm, we are able to compensate a regret that is also a
1
𝛾 factor greater, while keeping feasibility of the iterates.

In general, as in the remark above, this point of view on acceleration suggests that one

could tackle different online learning problems with different algorithms and one could exploit

different local descent conditions in order to compensate one with the other and still achieve

acceleration. Other examples in the literature are a three point coupling (Allen-Zhu, 2017a) used

in order to be able to incorporate variance reduction to acceleration in the convex finite-sum

setting. See (Allen-Zhu, 2018a) as well, in which this technique is used to minimize a convex

function which is an average of non-convex functions. Another family of examples concerns

finding stationary points of non-convex functions with Lipschitz gradient and Hessian, in the

finite-sum setting as well as approximate local minima (points whose gradient norm is ≤ 𝜀

and Hessian’s eigenvalues are ≥ −𝛿) (Allen-Zhu, 2017b; Allen-Zhu, 2018b; Fang et al., 2018;

Xu, Rong, and Yang, 2018; Allen-Zhu and Li, 2018). In these works, convexity is replaced by

⟨∇𝑓(𝑥𝑘+1), 𝑥𝑘+1−𝑢⟩ ≥ 𝑓(𝑥𝑘+1)−𝑓(𝑢)− �̂�
2‖𝑥𝑘+1−𝑢‖2 and an online learning algorithm is used to

exploit that condition and to couple it with GD. In Chapter 4, we use MD in the form (2.2.5) and

exploit a local decrease condition our problem satisfies in order to achieve acceleration, despite

of non-global smoothness and bad local smoothness constant.

2.6 The Approximate Duality Gap Technique

The previous section presented a work that explained the acceleration phenomenon as a cou-

pling of a primal algorithm and an online learning algorithm, which in the case of smooth convex

optimization is a dual algorithm. It gave geometrical intuition about why acceleration is possi-

ble and has allowed other algorithms to be built for different settings, due to its generality. In

this section, we present another, later work that also explains the acceleration phenomenon as a
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coupling of primal and dual algorithms but from a continuous point of view: The Approximate

Duality Gap Technique (ADGT) (Diakonikolas and Orecchia, 2019b). It is also an interesting

work because it presents a general technique from which one can derive with relative natural-

ity most classical first-order convex optimization algorithms. It describes the methods first as

continuous methods given by differential equations and then the rates of convergence come from

their discretizations and discretization errors. The aim of this technique is to directly obtain

an algorithm and a potential function to prove its convergence rates from the natural target of

reducing the optimality gap on the continuous case and from computing the discretization error

with simple integrators. From this new point of view, an essentially different accelerated algo-

rithm was designed for convex optimization (Diakonikolas and Orecchia, 2018). The main idea

consists of taking a backward Euler discretization rule of the differential equation. We note that

forward Euler discretization rules essentially yield previous existing algorithms. We will focus on

the latter in this section. In Chapter 3 we will present a modified version of the backward Euler

discretized method in order to achieve acceleration in a non-convex problem which is related to

Riemannian optimization. We note that the technique using the backward Euler discretization

uses gradient Lipschitzness as opposed to the definition of smoothness. Recall they are not equiv-

alent in general, so extending this technique to other non-convex settings would require gradient

Lipschitzness or other tricks. In our non-convex generalization in Chapter 3 we still have the

equivalence between smoothness and gradient Lipschitzness. If a smooth function satisfies that

any point with zero gradient is a global minimizer, then the function has Lipschitz gradient, and

this condition is satisfied for our problem.

Using this technique we will motivate the derivation of Algorithm 4. We will directly prove

convergence rates for this method and we will establish a relationship between this algorithm

and Algorithm 3, which entails that a convergence rate for the latter implies at least the same

convergence rate for the former. Let 𝛼𝑡 be an increasing function of time 𝑡, with 𝛼𝑡 = 0, if 𝑡 < 1.

We have 𝑡 = 1 is the initial time. We use Lebesgue-Stieltjes integration and its notation, so

that
∫︀ 𝑡
1 𝑓(𝑥𝜏 )d𝛼𝜏 =

∫︀ 𝑡
1 𝑓(𝑥𝜏 )�̇�𝜏d𝜏 . We want to work with continuous and discrete approaches

in a unified way. Thus, when 𝛼𝑡 is a discrete measure, we have that �̇�𝑡 =
∑︀∞

𝑘=1 𝑎𝑘𝛿(𝑡− 𝑘)) is a

weighted sum of Dirac delta functions and 𝑎𝑘 are step sizes. We define 𝐴𝑡
def
=
∫︀ 𝑡
1 d𝛼𝜏 =

∫︀ 𝑡
1 �̇�𝜏d𝜏 .

In discrete time, it is 𝐴𝑡 =
∑︀⌊𝑡⌋

𝑘=1 𝑎𝑘 = 𝛼𝑡. In the continuous case note that we have 𝛼𝑡−𝐴𝑡 = 𝛼1.

Let 𝑦𝑡 be the solution constructed by the algorithm at time 𝑡. The continuous method visits

the points 𝑥𝑡 and has access to ∇𝑓(𝑥𝑡). Note 𝑦𝑡 does not need to be equal to 𝑥𝑡. We define

the duality gap 𝐺𝑡
def
= 𝑈𝑡 − 𝐿𝑡 as the difference between a differentiable upper bound 𝑈𝑡 on the

function at the current point 𝑦𝑡, and a differentiable lower bound 𝐿𝑡 on 𝑓(𝑥*). Since in our case

𝑓 is differentiable, we use 𝑈𝑡
def
= 𝑓(𝑦𝑡). The idea is to enforce the invariant 𝑑

𝑑𝑡(𝛼𝑡𝐺𝑡) = 0, so we

have 𝑓(𝑥𝑡)− 𝑓(𝑥*) ≤ 𝐺𝑡 = 𝐺1𝛼1/𝛼𝑡 at any time. Combining the convexity inequality for all the

points visited by the continuous method we have a lower bound:

𝑓(𝑥*) ≥
∫︀ 𝑡
1 𝑓(𝑥𝜏 )𝑑𝛼𝜏

𝐴𝑡
+

∫︀ 𝑡
1 ⟨∇𝑓(𝑥𝜏 ), 𝑥

* − 𝑥𝜏 ⟩𝑑𝛼𝜏
𝐴𝑡

.
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However, this lower bound requires the knowledge of 𝑥*. We could compute a looser lower bound

by taking the minimum over 𝑢 ∈ 𝒳 of this expression, substituting 𝑥* by 𝑢. However, this would

make the lower bound be non-differentiable and we could have problems at 𝑡 = 1. In order to

solve the first problem, we first add a regularizer and then take the minimum over 𝑢 ∈ 𝒳 .

𝑓(𝑥*)+
𝐷𝜓(𝑥

*, 𝑥1)

𝐴𝑡
≥
∫︀ 𝑡
1 𝑓(𝑥𝜏 )𝑑𝛼𝜏

𝐴𝑡
+

min𝑢∈𝒳

{︁∫︀ 𝑡
1 ⟨∇𝑓(𝑥𝜏 ), 𝑢− 𝑥𝜏 ⟩𝑑𝛼𝜏 +𝐷𝜓(𝑢, 𝑥1)

}︁
𝐴𝑡

Let 𝑧𝑡
def
= ∇𝜓(𝑥1)−

∫︀ 𝑡
1 ∇𝑓 (𝑥𝜏 ) d𝛼𝜏 . Then, by Fact 2.1.6, and since 𝜓 is strongly convex, we have

that ∇𝜓*(𝑧𝑡) is the argmin of the expression above. This is analogous to what one obtains with

FTRL, and we are essentially bounding the function plus a regularizer that decreases as fast as

the convergence rates we aim to prove. Here, the stability added by the regularizer is in the

form of differentiability. In order to solve the second problem, we mix this lower bound with the

optimal lower bound 𝑓(𝑥*) with weight 𝛼𝑡 − 𝐴𝑡 (this is only necessary in continuous time, in

discrete time this term is 0). Not knowing 𝑓(𝑥*) or 𝐷𝜓(𝑥
*, 𝑥1) will not be problematic. Indeed,

we only need to guarantee 𝑑
𝑑𝑡(𝛼𝑡𝐺𝑡) = 0. After taking the derivative, these terms will vanish.

After rescaling the normalization factor, we finally obtain the differentiable lower bound

𝑓(𝑥*) ≥ 𝐿𝑡
def
=

∫︀ 𝑡
1 𝑓(𝑥𝜏 )d𝛼𝜏

𝛼𝑡
+

min𝑢∈𝒳

{︁∫︀ 𝑡
1 ⟨∇𝑓(𝑥𝜏 ), 𝑢− 𝑥𝜏 ⟩d𝛼𝜏 +𝐷𝜓(𝑢, 𝑥1)

}︁
𝛼𝑡

+
(𝛼𝑡 −𝐴𝑡)𝑓(𝑥*)−𝐷𝜓(𝑥

*, 𝑥1)

𝛼𝑡
.

(2.6.1)

We can now compute

d

d𝑡
(𝛼𝑡𝐺𝑡) =

d

d𝑡
(𝛼𝑡𝑓(𝑥𝑡))− �̇�𝑡(𝑓(𝑥𝑡) + ⟨∇𝑓(𝑥𝑡),∇𝜓*(𝑧𝑡)− 𝑥𝑡⟩)

= ⟨∇𝑓(𝑥𝑡), 𝛼𝑡�̇�𝑡 − �̇�𝑡(∇𝜓*(𝑧𝑡)− 𝑥𝑡)⟩.

We can make the right hand side be 0 by defining the continuous method as starting with

𝑥1 ∈ 𝒳 , 𝑧1 = ∇𝜓(𝑥1) and having

�̇�𝑡 = −�̇�𝑡∇𝑓(𝑥𝑡); �̇�𝑡 = �̇�𝑡
∇𝜓(𝑧𝑡)− 𝑥𝑡

𝛼𝑡
. (2.6.2)

Now we discretize these dynamics, which will determine the convergence rate of the algorithm.

In particular, denote the discretization error of our method by 𝐸𝑘, so that 𝐴𝑘𝐺𝑘 −𝐴𝑘−1𝐺𝑘−1 =

𝐸𝑘. Then

𝐺𝑇 ≤
𝐴1

𝐴𝑇
𝐺1 +

∑︀𝑇−1
𝑘=1 𝐸𝑘+1

𝐴𝑇
.

In the discrete case we have to trade off between rapidly increasing 𝛼𝑡 and having low discretiza-

tion error. In this case we will aim to obtain non-positive discretization error. So in a way, on

could see this approach as a potential based analysis with potential 𝐴𝑘𝐺𝑘(≤ 𝐴𝑘−1𝐺𝑘−1 ≤ · · · ≤
𝐴1𝐺1). But this point of view has allowed us to obtain the potential function naturally. Suppose

now that 𝛼𝑡 is a discrete measure, as explained above. The discretization error 𝐸𝑘 is incurred

because of different integral values in the continuous and discrete cases in the integral under the
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minimum of the lower bound, which essentially comes from discontinuities in the updates: we

make 𝑥𝑘 depend on 𝑧𝑘−1 in the discrete case. We can compute the discretization error at one

step by taking the difference between the integral with our discrete measure and the one with a

continuous measure. In the discrete case between time 𝑘− 1 and 𝑘 we have that �̇�𝜏 samples the

function under the integral at time 𝑘 so we have

𝐸𝑘 = (−𝑎𝑘⟨∇𝑓(𝑥𝑘),∇𝜓*(𝑧𝑘)− 𝑥𝑘)⟩)−
(︂
−
∫︁ 𝑘

𝑘−1
⟨∇𝑓(𝑥𝜏 ),∇𝜓*(𝑧𝑘)− 𝑥𝜏 ⟩d𝛼𝜏

)︂
1
= −𝑎𝑘⟨∇𝑓(𝑥𝑘),∇𝜓*(𝑧𝑘)− 𝑥𝑘)⟩+

∫︁ 𝑘

𝑘−1
⟨∇𝑓(𝑥𝜏 ), 𝛼𝜏 �̇�𝜏 ⟩d𝜏 +

∫︁ 𝑘

𝑘−1
⟨−�̇�𝜏 ,∇𝜓*(𝑧𝑘)−∇𝜓*(𝑧𝜏 )⟩d𝜏

2
= −𝑎𝑘⟨∇𝑓(𝑥𝑘),∇𝜓*(𝑧𝑘)− 𝑥𝑘)⟩+𝐴𝑘−1(𝑓(𝑥𝑘)− 𝑓(𝑥𝑘−1))−𝐷𝜓*(𝑧𝑘−1, 𝑧𝑘)

3
≤ ⟨∇𝑓(𝑥𝑘), 𝐴𝑘𝑥𝑘 −𝐴𝑘−1𝑥𝑘−1 − 𝑎𝑘∇𝜓*(𝑧𝑘)⟩ −𝐷𝜓*(𝑧𝑘−1, 𝑧𝑘).

(2.6.3)

In 1 , we used both equations in (2.6.2). In 2 , we integrated the first integral by parts and

the computation of the second integral reduces to noting that it equals
∫︀ 𝑘
𝑘−1

d
d𝜏𝐷𝜓*(𝑧𝜏 , 𝑧𝑘)d𝜏 by

Lemma 2.1.8.3. Finally, in 3 we used convexity of 𝑓 on the second summand. We note we could

have computed 𝐴𝑘𝐺𝑘 −𝐴𝑘−1𝐺𝑘−1 directly to arrive to the same bound. In the next subsection,

in which we analyze Algorithm 3 through this point of view, we will do exactly that for the sake

of demonstrating this alternative.

Using the Euler discretization we obtain the update rule 𝑥𝑘 =
𝐴𝑘−1

𝐴𝑘
𝑥𝑘−1 +

𝑎𝑘
𝐴𝑘
∇𝜓*(𝑧𝑘−1)

which makes the first term of the discretization error be 𝑎𝑘⟨∇𝑓(𝑥𝑘),∇𝜓*(𝑧𝑘−1) − ∇𝜓*(𝑧𝑘)⟩.
Now the idea is to take an extra gradient step to reduce the upper bound and compensate for

the discretization error. The algorithm then becomes Algorithm 4:

𝑥𝑘 =
𝐴𝑘−1

𝐴𝑘
𝑦𝑘−1 +

𝑎𝑘
𝐴𝑘
∇𝜓*(𝑧𝑘−1); 𝑧𝑘 = 𝑧𝑘−1 − 𝑎𝑘∇𝑓(𝑥𝑘); 𝑦𝑘 = Line 9 or Line 10, (2.6.4)

for 𝑥0 = 𝑦0 ∈ 𝒳 , 𝑧0 = ∇𝜓(𝑥0). Note 𝑥1 = 𝑥0 and that we have shifted the indices to account

for the Euler discretization update. The GD point 𝑦𝑘 is taken as in the previous section. The

gradient step only changes the upper bound, from 𝑈𝑘 = 𝑓(𝑥𝑘) to 𝑈𝑘 = 𝑓(𝑦𝑘). Thus, the new

discretization error is

𝐸𝑘 ≤ 𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘)) + 𝑎𝑘⟨∇𝑓(𝑥𝑘),∇𝜓*(𝑧𝑘−1)−∇𝜓*(𝑧𝑘)⟩ −𝐷𝜓*(𝑧𝑘−1, 𝑧𝑘),

1
≤ 𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘)) + 𝑎𝑘⟨∇𝑓(𝑥𝑘),∇𝜓*(𝑧𝑘−1)−∇𝜓*(𝑧𝑘)⟩ −

1

2
‖∇𝜓*(𝑧𝑘−1)−∇𝜓*(𝑧𝑘)‖2,

(2.6.5)

In 1 , we bounded the Bregman divergence by using Lemma 2.1.8.6 and Lemma 2.1.8.2. Now, if

we use smoothness we will be able to cancel the first summand of 𝐸𝑘 above with the other two.

Indeed the smoothness inequality is

𝑓(𝑦𝑘)− 𝑓(𝑥𝑘) ≤ ⟨∇𝑓(𝑥𝑘), 𝑦𝑘 − 𝑥𝑘⟩+
𝐿

2
‖𝑦𝑘 − 𝑥𝑘‖2. (2.6.6)
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If we have 𝑦𝑘 = 𝑥𝑘 −
𝑎𝑘
𝐴𝑘

(∇𝜓*(𝑧𝑘−1)−∇𝜓*(𝑧𝑘)) =
𝐴𝑘−1

𝐴𝑘
𝑦𝑘−1 +

𝑎𝑘
𝐴𝑘
∇𝜓*(𝑧𝑘) ∈ 𝒳 (which is the

choice 𝑦𝑘 =Line 9) we obtain from (2.6.6):

𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘)) ≤ −𝑎𝑘⟨∇𝑓(𝑥𝑘),∇𝜓*(𝑧𝑘−1)−∇𝜓*(𝑧𝑘)⟩+
𝐿𝑎2𝑘
2𝐴𝑘
‖∇𝜓*(𝑧𝑘−1)−∇𝜓*(𝑧𝑘)‖2,

(2.6.7)

and so the discretization error is bounded as

𝐸𝑘 ≤
(︂
𝐿𝑎2𝑘
2𝐴𝑘

− 1

2

)︂
‖∇𝜓*(𝑧𝑘−1)−∇𝜓*(𝑧𝑘)‖2.

Any point 𝑦𝑘 with a lower right hand side of (2.6.6), like the gradient step in Line 10, would

yield at least the same guarantee. Finally, recall that 𝐴𝑘 =
∑︀𝑘

𝑖=1 𝑎𝑖, so if we set 𝑎𝑘 =
𝜂𝑘
𝐿 we

satisfy 𝑎2𝑘
𝐴𝑘

= 1
𝐿 and thus 𝐸𝑘 ≤ 0 implying 𝐺𝑇 ≤ 𝑎1𝐺1/𝐴𝑇 . Bounding the initial gap and using

𝐴𝑇 = 𝑎2𝑇𝐿, we obtain an optimal convergence bound. Using the definition of 𝑈1 and 𝐿1, we have

𝑎1𝐺1 = 𝑎1𝑈1 − 𝑎1𝐿1

= 𝑎1𝑓(𝑦1)−
(︁
𝑎1𝑓(𝑥1)− 𝑎1⟨∇𝑓(𝑥1),∇𝜓*(𝑧1)− 𝑥1⟩ −𝐷𝜓(∇𝜓*(𝑧1), 𝑥1) +𝐷𝜓(𝑥

*, 𝑥1)
)︁

1
≤ 𝐷𝜓(𝑥

*, 𝑥1),

where in 1 we used the same as what we used in (2.6.5) and (2.6.7) for 𝐸𝑘. Finally using

𝐴𝑇 = 𝑎2𝑇𝐿 =
𝜂2𝑇
𝐿 , we conclude

𝑓(𝑦𝑇 )− 𝑓(𝑥*) ≤ 𝐺𝑇 ≤
𝑎1𝐺1

𝐴𝑇
≤
𝐿𝐷𝜓(𝑥

*, 𝑥1)

𝜂2𝑇
=
𝐿𝐷𝜓(𝑥

*, 𝑥0)

𝜂2𝑇
.

2.6.1 Incorporating Mirror Descent

Diakonikolas and Orecchia (2019b) analyzed acceleration with the approximate duality gap

technique using FTRL. We now we adapt the analysis for the MD version. We will do this by

showing a relationship between MD and FTRL that essentially means that MD builds looser

regularized lower bounds than FTRL. This analysis provides further intuition about these two

online learning algorithms.

Starting at an arbitrary point ∇𝜓*(𝑧0) = 𝑥0, we have that for 𝑘 ≥ 0, . . . , 𝑇 − 1, Algorithm 3

performs the following steps:

𝑥𝑘+1 ←
𝑎𝑘+1

𝐴𝑘+1

∇𝜓*(𝑧𝑘) +
𝐴𝑘
𝐴𝑘+1

𝑦𝑘

𝑧𝑘+1 ← ∇𝜓(𝑧′𝑘)− 𝑎𝑘+1∇𝑓(𝑥𝑘+1)

𝑧′𝑘+1 ← argmin
𝑢∈𝒳

{︀
𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑢− 𝑥𝑘+1⟩+𝐷𝜓(𝑢,∇𝜓*(𝑧𝑘))

}︀
(= ∇𝜓*(𝑧𝑘+1))

𝑦𝑘+1 ← Line 9 or Line 10 of Algorithm 3

(2.6.8)

We also define 𝑉𝑘+1
def
= min𝑢∈𝒳

{︀
𝑎𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑢− 𝑥𝑘+1⟩+𝐷𝜓(𝑢,∇𝜓*(𝑧𝑘))

}︀
as the mini-

mum of which 𝑧′𝑘+1 = ∇𝜓*(𝑧𝑘+1) is argmin. We modify the ADGT argument above by using a
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different lower bound. Just for the sake of showing both arguments, this time we will directly

work with a discrete measure 𝛼𝑡 such that �̇�𝑡 =
∑︀∞

𝑘=1 𝑎𝑘𝛿(𝑡 − 𝑘) and will directly compute

the discretization error. But we note that we would obtain exactly the same bound if we used

continuous arguments. The lower bound on 𝑓(𝑥*) we use is the following:

𝐿𝑡
def
=

1

𝐴𝑡

(︃
𝑡∑︁

𝑘=1

𝑎𝑘𝑓(𝑥𝑘) +

𝑡∑︁
𝑘=1

𝑉𝑘 −𝐷𝜓(𝑥
*, 𝑥1)

)︃
. (2.6.9)

It is a lower bound on 𝑓(𝑥*) because we can show it is looser than the bound in Equation (2.6.1)

we used before. We just need to sequentially apply Lemma 2.6.1. Note 𝛼𝑡 = 𝐴𝑡 because we are

in the discrete case. The bound is the following:

(2.6.1) =
1

𝐴𝑡

(︃
𝑡∑︁

𝑘=1

𝑎𝑘𝑓(𝑥𝑘) + min
𝑢∈𝒳

{︃
𝑡∑︁

𝑘=1

⟨𝑎𝑘∇𝑓(𝑥𝑘), 𝑢− 𝑥𝑘⟩+𝐷𝜓(𝑢, 𝑥1)

}︃
−𝐷𝜓(𝑥

*, 𝑥1)

)︃
1
≥ 1

𝐴𝑡

(︃
𝑡∑︁

𝑘=1

𝑎𝑘𝑓(𝑥𝑘) +
𝑡∑︁

𝑘=1

𝑉𝑘 +min
𝑢∈𝒳
{𝐷𝜓(𝑢,∇𝜓*(𝑧𝑡))} −𝐷𝜓(𝑥

*, 𝑥1)

)︃
2
=

1

𝐴𝑡

(︃
𝑡∑︁

𝑘=1

𝑎𝑘𝑓(𝑥𝑘) +

𝑡∑︁
𝑘=1

𝑉𝑘 −𝐷𝜓(𝑥
*, 𝑥1)

)︃
,

where 1 uses 𝑥1 = 𝑧′0 = ∇𝜓*(𝑧0) and then it uses Lemma 2.6.1 sequentially 𝑡 times and 2 uses

the fact that the minimum of the Bregman divergence 𝐷𝜓(𝑢,∇𝜓*(𝑧𝑡)) is reached at ∇𝜓*(𝑧𝑡) and

its value is 0.

Lemma 2.6.1. For all 𝑢 ∈ 𝒳 we have

𝑎𝑘⟨∇𝑓(𝑥𝑘), 𝑢− 𝑥𝑘⟩+𝐷𝜓(𝑢,∇𝜓*(𝑧𝑘−1)) ≥ 𝑉𝑘 +𝐷𝜓(𝑢,∇𝜓*(𝑧𝑘)).

Proof Using that by definition 𝑉𝑘 = 𝑎𝑘⟨∇𝑓(𝑥𝑘),∇𝜓*(𝑧𝑘)−𝑥𝑘⟩+𝐷𝜓(∇𝜓*(𝑧𝑘),∇𝜓*(𝑧𝑘−1)) and

reorganizing terms we obtain the following equivalent inequality

𝑎𝑘⟨∇𝑓(𝑥𝑘), 𝑢−∇𝜓*(𝑧𝑘)⟩+𝐷𝜓(𝑢,∇𝜓*(𝑧𝑘−1))−𝐷𝜓(𝑢,∇𝜓*(𝑧𝑘))−𝐷𝜓(∇𝜓*(𝑧𝑘),∇𝜓*(𝑧𝑘−1)) ≥ 0

And this is equivalent, by the triangle equality of Bregman divergences Lemma 2.1.8.5, to:

⟨∇𝜓(∇𝜓*(𝑧𝑘))−∇𝜓(∇𝜓*(𝑧𝑘−1)) + 𝑎𝑘∇𝑓(𝑥𝑘), 𝑢−∇𝜓*(𝑧𝑘)⟩ ≥ 0.

Since we have ∇𝜓*(𝑧𝑘) = argmin𝑥∈𝒳 {−⟨𝑥, 𝑧𝑘⟩ + 𝜓(𝑥)} by Fact 2.1.6, then by the first-order

optimality condition of the Fenchel dual 𝜓*(𝑧𝑘)
def
= min𝑥∈𝒳 {−⟨𝑥, 𝑧𝑘⟩+ 𝜓(𝑥)} we have 1 below:

0
1
≤ ⟨−𝑧𝑘 +∇𝜓(𝑧′𝑘), 𝑢− 𝑧′𝑘⟩
2
= ⟨−∇𝜓(𝑧′𝑘−1) + 𝑎𝑘−1∇𝑓(𝑥𝑘) +∇𝜓(𝑧′𝑘), 𝑢− 𝑧′𝑘⟩ ≥ 0,

3
= ⟨−∇𝜓(∇𝜓*(𝑧𝑘−1)) + 𝑎𝑘∇𝑓(𝑥𝑘) +∇𝜓(∇𝜓*(𝑧𝑘)), 𝑢−∇𝜓*(𝑧𝑘)⟩,

where 2 holds by the definition of 𝑧𝑘, and in 3 we used 𝑧′𝑘 = ∇𝜓*(𝑧𝑘) and 𝑧′𝑘−1 = ∇𝜓*(𝑧𝑘−1).
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Now we compute the discretization error

𝐸𝑘
1
= 𝐴𝑘𝐺𝑘 −𝐴𝑘−1𝐺𝑘−1

= 𝐴𝑘−1(𝑓(𝑥𝑘)− 𝑓(𝑦𝑘−1)) + 𝑎𝑘𝑓(𝑥𝑘) +𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘))

−
𝑘∑︁
𝑖=1

𝑎𝑖𝑓(𝑥𝑖)−
𝑘∑︁
𝑖=1

𝑉𝑖 +

𝑘−1∑︁
𝑖=1

𝑎𝑖𝑓(𝑥𝑖) +

𝑘−1∑︁
𝑖=1

𝑉𝑖

2
≤ 𝐴𝑘−1⟨∇𝑓(𝑥𝑘), 𝑥𝑘 − 𝑦𝑘−1⟩ − 𝑉𝑘 +𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘))
3
= 𝐴𝑘−1⟨∇𝑓(𝑥𝑘), 𝑥𝑘 − 𝑦𝑘−1⟩ − 𝑎𝑘⟨∇𝑓(𝑥𝑘),∇𝜓*(𝑧𝑘)− 𝑥𝑘⟩ −𝐷𝜓(∇𝜓*(𝑧𝑘),∇𝜓*(𝑧𝑘−1))

+𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘)).
4
≤ 𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘)) + 𝑎𝑘⟨∇𝑓(𝑥𝑘),∇𝜓*(𝑧𝑘−1)−∇𝜓*(𝑧𝑘)⟩ −𝐷𝜓(∇𝜓*(𝑧𝑘),∇𝜓*(𝑧𝑘−1)).

In 1 we write out the definition of the gap, taking into account we keep the upper bound

𝑈𝑘 = 𝑓(𝑦𝑘), but we add and subtract 𝐴𝑘𝑓(𝑥𝑘) to make comparisons with respect to the upper

bound 𝑓(𝑥𝑘), as in the previous analysis. In 2 , we use convexity on the first summand and

cancel some terms. In 3 we write the definition of 𝑉𝑘 with its argmin ∇𝜓*(𝑧𝑘). 4 reorganizes

terms and uses equality 𝐴𝑘𝑥𝑘 = 𝐴𝑘−1𝑦𝑘−1 + 𝑎𝑘∇𝜓*(𝑧𝑘−1), which is the definition of 𝑥𝑘.

Now, if we take into account the inequalities in Lemma 2.1.8.6 and Lemma 2.1.8.2, namely

−𝐷𝜓*(𝑧𝑘−1, 𝑧𝑘) ≤ −𝐷𝜓(∇𝜓*(𝑧𝑘),∇𝜓*(𝑧𝑘−1)) ≤ −
1

2
‖∇𝜓*(𝑧𝑘−1)−∇𝜓*(𝑧𝑘)‖2,

we arrive at the same bound for the discretization error as in (2.6.5), so the rest of the convergence

proof is identical. We note that the looser regularized lower bound used in this case translates to

having a negative term using the Bregman divergence −𝐷𝜓(∇𝜓*(𝑧𝑘),∇𝜓*(𝑧𝑘−1)), as opposed to

the term in the previous analysis −𝐷𝜓*(𝑧𝑘−1, 𝑧𝑘). This is again an instance of the fact that looser

losses lose more. However, we note that the fact that the regularized lower bound of the algorithm

using MD is looser than the one using FTRL does not mean that the actual lower bound that

could be guaranteed on 𝑓(𝑥*) is worse. The reduction of the regularized lower bound can indeed

be due to a decrease in the regularizer, that we are not accounting for, which would actually

improve convergence (the term 𝐷𝜓(𝑥
*, 𝑥0) could be substituted by something with a lower value).

In any case, this analysis suggests that convergence rates of general accelerated methods based

on MD would automatically yield convergence rates for analogous accelerated methods based on

FTRL as long as the original algorithm does not use some other specific properties of the MD

update. Note that the analysis of the method in this subsection (Algorithm 3) automatically

implies the convergence of the previous method based on FTRL (Algorithm 4) with rates that

are at least as good.

41



2.7 Others

We conclude by commenting on some other techniques and algorithms that we do not cover

in full detail. As we advanced in the introduction, our list is not comprehensive, and we do

not focus on how these and all the previously presented techniques generalize to settings beyond

smooth and convex optimization. Our focus instead is on presenting the key ideas of accelerated

techniques to the simplest possible setting.

Optimized gradient method

Kim and Fessler (2016) used some relaxations of techniques developed by Drori and Teboulle

(2014) to obtain an accelerated method, the optimized gradient method, that improves by a

constant over the guarantee of AGD. This convergence was later seen to be optimal in Drori

(2017), even considering constants. Both the upper and lower bounds were originally obtained

by optimizing the worst case guarantee within a family of first-order methods in which the

iterates are linear combinations of the initial point and gradients of past points, but where the

coefficients are independent on the function. Finding the algorithm with the best guarantee in

the worst case can be described as an optimization problem. The dual of such problem yields a

hard instance. Even though the optimization problem does not seem to be efficiently solvable,

performing some relaxations allows for efficient optimization and it suffices to find matching

upper and lower bounds on performance with respect to several metrics, considering constants

(Drori and Teboulle, 2014; Kim and Fessler, 2016; Taylor, Hendrickx, and Glineur, 2017; Drori,

2017). The technique has been applied to other settings. For instance, it has been applied to

the strongly convex case in order to obtain the exact complexity, considering constants, of the

first-order black-box optimization problem (Drori and Taylor, 2021; Taylor and Drori, 2021).

The optimized gradient method method coincides with unconstrained AGD with smoothness

defined by ‖ · ‖2 (note the versions we provided in Section 2.4 are equivalent in this case) except

for a slightly different choice of the learning rate. While in AGD we choose 𝑎𝑘+1 = 𝜂𝑘+1/𝐿

and 𝜏𝑘 = 1/𝜂𝑘+1 for 𝑘 = 0, . . . , 𝑇 − 1 (cf. Algorithm 4), in the optimized gradient method

one chooses 𝑎𝑘+1 = 2𝜂𝑘+1/𝐿 for 𝑘 = 0, . . . , 𝑇 − 1 and 𝜏𝑘 = 1/𝜂𝑘+1 for 𝑘 = 0, . . . , 𝑇 − 2 and

for 𝑘 = 𝑇 − 1 it is 𝜏𝑇−1 = 1/𝜂′𝑇 where 𝜂′𝑇 = (1 +
√︁
1 + 8𝜂2𝑇−1)/2. As a comparison, we had

𝜂𝑇 = (1 +
√︁

1 + 4𝜂2𝑇−1)/2 in AGD.

As with Nemirovski’s quasi-AGD and with Nesterov’s AGD, this method also has an inter-

pretation with an analysis coming from the analysis of CGD we presented in Section 2.3, but

using a slightly modified learning rate, cf. (d’Aspremont, Scieur, and Taylor, 2021; Drori and

Taylor, 2020).

Optimistic online learning and acceleration

Optimistic online learning is essentially a way of solving online learning that consists of

guessing what the next loss is going to be and pretend it is the actual next loss when computing
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the prediction. For instance, if we were to use FTRL we would predict the argmin of the

regularized sum of losses plus the guess. In order to perform a reduction to convex optimization

one feeds weighted gradients 𝑎𝑘∇𝑓(𝑥𝑘) to the algorithm. Typical regret bounds have the form:

𝑅𝑇 ≤ 𝑟(𝑥*) +
1

2

𝑇∑︁
𝑘=1

𝑎2𝑘‖∇𝑓(𝑥𝑘)− 𝑔𝑘‖2*. (2.7.1)

where 𝑟(𝑥*) is a strongly convex regularizer evaluated at 𝑥*, coming from the regularization we

used in the algorithm. We also used 𝑔𝑘 to denote the guess of the loss that later was revealed

to be ∇𝑓(𝑥𝑘). If we know a bound on the magnitude of ∇𝑓(𝑥𝑘) (for instance, if 𝑓 is Lipschitz),

then making a wrong prediction all of the time only incurs a factor of 2 in the regret with respect

to the non-optimistic approach, but being consistently good at predicting the losses can reduce

the regret significantly. Guesses can be usually obtained from some structure of our problem. In

accelerated smooth convex optimization one uses 𝑔𝑘 = ∇𝑓(𝑥𝑘−1). In this context Joulani, Raj,

et al. (2020) use an anytime reduction, meaning that they have guarantees for the last iterate

(as opposed to a weighted average, for example), and they use FTRL with optimism and show

that they achieve acceleration.

The optimistic approach is interesting because it reduces the convergence analysis completely

to the regret analysis of the online learning algorithm with linearized losses. Another advantage

of this approach is that it readily generalizes to stochastic optimization, composite optimization

or both. In some settings, one can also make the algorithm universal, meaning that it achieves

smoothness and non-smoothness optimal rates, up to logarithmic factors, without knowledge of

the smoothness parameter of the problem.

Proximal point algorithms and acceleration

We use ‖ · ‖ = ‖ · ‖2 and 𝒳 = R𝑛 in this section for simplicity. We define the proximal

operator of a convex function 𝑓 as

prox 𝜆𝑓 (𝑥)
def
= argmin

𝑦

{︂
𝑓(𝑦) +

1

2𝜆
‖𝑦 − 𝑥‖2

}︂
,

where 𝜆 ∈ R>0 is a parameter. Also, the Moreau envelope of 𝑓 is defined as

𝑀𝜆𝑓
def
= min

𝑦

{︂
𝑓(𝑦) +

1

2𝜆
‖𝑦 − 𝑥‖2

}︂
= (𝑓* +

𝜆

2
‖ · ‖2)*

This function is a smoothed version of 𝑓 with smoothness parameter 1
𝜆 or lower. From the second

definition using Fenchel duality and using that an 𝐿-smooth function 𝑓 has 1
𝐿 -strongly convex

Fenchel dual and vice versa, we have that 𝑓* + 𝜆
2‖ · ‖

2 is ( 1𝐿 + 𝜆)-strongly convex and 𝑀𝜆𝑓 is

smooth with parameter 1
1/𝐿+𝜆 ≤

1
𝜆 . Because of the formulation above as a Fenchel dual, we have

that the Moreau envelope is convex. Some other useful properties of the Moreau envelope and the

proximal operator are ∇𝑀𝜆𝑓 = (𝑥−prox 𝜆𝑓 (𝑥))/𝜆, which can be seen to hold by Fact 2.1.6. Also,

we can see the proximal operator as an implicit gradient step prox 𝜆𝑓 (𝑥) = 𝑥−𝜆∇𝑓(prox 𝜆𝑓 (𝑥)),
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cf. (Parikh and Boyd, 2014). The Moreau envelope also satisfies that their minimizers are the

same minimizers as those of 𝑓 . Indeed, if 𝑥* is a minimizer of 𝑓 then trivially prox 𝜆𝑓 (𝑥
*) = 𝑥*

and so 𝑀𝜆𝑓 (𝑥
*) = 𝑓(𝑥*). And if 𝑥 is not a minimizer of 𝑓 then 0 is not a subgradient of

𝑓(𝑦) + 1
2𝜆‖𝑦 − 𝑥‖

2 at 𝑦 = 𝑥 and thus prox 𝜆𝑓 (𝑥) ̸= 𝑥 and then 𝑥 is not a minimizer of 𝑀𝜆𝑓

because 𝑀𝜆𝑓 (𝑥
*) = 𝑓(𝑥*) < 𝑓(prox 𝜆𝑓 (𝑥))+

1
2𝜆‖prox 𝜆𝑓 (𝑥)− 𝑥‖

2 =𝑀𝜆𝑓 (𝑥). Consequently if we

fix 𝜆 we could apply AGD to this function and we would obtain an 𝜀-minimizer in 𝑂(‖𝑥
*−𝑥0‖2
𝜆𝑇 2 )

iterations. The caveat is that we have to compute the proximal operator at each iteration and

this subproblem could be expensive, specially if 𝜆 is large. Interestingly, one can make use of

different 𝜆𝑘 at iteration 𝑘 and one can solve the proximal subproblem inexactly and still obtain

acceleration, like in the approaches in (Monteiro and Svaiter, 2013). Indeed, we can use the lower

bound 𝑓(𝑥*) ≥ 𝑀𝜆𝑘𝑓 (𝑥) + ⟨∇𝑀𝜆𝑘𝑓 (𝑥), 𝑥
* − 𝑥⟩ for any 𝜆𝑘 for our online learning problem that

estimates 𝑓(𝑥*). Further we can use a gradient step of𝑀𝜆𝑘𝑓 from 𝑥 in order to balance the regret,

as in Linear Coupling. The subproblems are strongly convex, so they can be approximately solved

fast. This framework provides great flexibility for the design of accelerated first-order methods.

Let’s use the ADGT to derive an algorithm by (Güler, 1992) that uses these lower bounds

by defining an upper bound 𝑈𝑘 = 𝑓(𝑦𝑘) where 𝑦𝑘 = prox 𝜆𝑘𝑓 (𝑥𝑘) is a gradient point, coming

from the aforementioned implicit gradient step, that is, 𝑦𝑘 = 𝑥𝑘 − 𝜆𝑘∇𝑓(𝑦𝑘). The points 𝑥𝑘 will

be chosen later. Similarly, define a lower bound combining regularization with what convexity

provides for the Moreau envelope at the points 𝑥𝑘:

𝑓(𝑥*) ≥ 𝐿𝑘
def
=

1

𝐴𝑘

(︃
𝑘∑︁
𝑖=1

𝑎𝑖𝑀𝜆𝑖𝑓 (𝑥𝑖) + min
𝑢∈R𝑛

{︃
𝑘∑︁
𝑖=1

𝑎𝑖⟨∇𝑀𝜆𝑖𝑓 (𝑥𝑖), 𝑢− 𝑥𝑖⟩+
1

2
‖𝑢− 𝑥1‖2

}︃

− 1

2
‖𝑥* − 𝑥1‖2

)︃

=
1

𝐴𝑘

(︃
𝑘∑︁
𝑖=1

𝑎𝑖(𝑓(𝑦𝑖) +
1

2𝜆𝑖
‖𝑥𝑖 − 𝑦𝑖‖2) +

(︃
𝑘∑︁
𝑖=1

𝑎𝑖⟨∇𝑓(𝑦𝑖), 𝑧𝑖 − 𝑥𝑖⟩+
1

2
‖𝑧𝑖 − 𝑥1‖2

)︃

− 1

2
‖𝑥* − 𝑥1‖2

)︃
.

which as in the ADGT section, it comes from a convex combination of the convexity inequal-

ities, adding and subtracting the strongly convex regularizer and taking a minimum in or-

der to remove the relevant dependence of the lower bound on 𝑥*. We defined the notation

𝑧𝑘 = 𝑥1 −
∑︀𝑘

𝑖=1 𝑎𝑖∇𝑓(𝑦𝑖) for the solution of the FTRL subproblem in the lower bound, that

is the argmin in the minimization problem above. We will choose the values of 𝑎𝑘 later, and

the algorithm will depend on the choices of 𝜆𝑘. Recall 𝐴𝑘 =
∑︀𝑘

𝑖=1 𝑎𝑘 and that we can update

𝑧𝑘 = 𝑧𝑘−1 − 𝑎𝑘∇𝑓(𝑦𝑘).
It is easy to see, as in the previous continuous analysis of the ADGT, that the derivative of

𝛼𝑡𝐺𝑡 can be made 0 if point 𝑥𝑡 satisfies 𝛼𝑡�̇�𝑡 = �̇�𝑡(𝑧𝑡 − 𝑥𝑡), which ultimately in the discrete case

leads to 𝐴𝑘𝑥𝑘 = 𝐴𝑘−1𝑦𝑘−1 + 𝑎𝑘𝑧𝑘−1, although it will also be clear from the computation of the
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discretization error 𝐸𝑘 that this choice cancels the right terms. We compute 𝐸𝑘 now:

𝐸𝑘 = 𝐴𝑘𝐺𝑘 −𝐴𝑘−1𝐺𝑘−1

1
= 𝐴𝑘−1(𝑓(𝑦𝑘)− 𝑓(𝑦𝑘−1)) + 𝑎𝑘𝑓(𝑦𝑘)

−

(︃
𝑘∑︁
𝑖=1

𝑎𝑖

(︂
𝑓(𝑦𝑖) +

1

2𝜆𝑖
‖𝑦𝑖 − 𝑥𝑖‖2 + ⟨∇𝑓(𝑦𝑖), 𝑧𝑘 − 𝑥𝑖⟩

)︂
+

1

2
‖𝑧𝑘 − 𝑥1‖2

)︃

+

𝑘−1∑︁
𝑖=1

𝑎𝑖

(︂
𝑓(𝑦𝑖) +

1

2𝜆𝑖
‖𝑦𝑖 − 𝑥𝑖‖2 + ⟨∇𝑓(𝑦𝑖), 𝑧𝑘−1 − 𝑥𝑖⟩

)︂
+

1

2
‖𝑧𝑘−1 − 𝑥1‖2

2
≤ 𝐴𝑘−1(𝑓(𝑦𝑘)− 𝑓(𝑦𝑘−1))− 𝑎𝑘

(︂
1

2𝜆𝑘
‖𝑦𝑘 − 𝑥𝑘‖2 + ⟨∇𝑓(𝑦𝑘), 𝑧𝑘 − 𝑥𝑘⟩

)︂
− 1

2
‖𝑧𝑘 − 𝑧𝑘−1‖2

3
≤ ⟨∇𝑓(𝑦𝑘), 𝐴𝑘−1𝑥𝑘 −𝐴𝑘−1𝑦𝑘−1 − 𝑎𝑘𝑧𝑘−1 + 𝑎𝑘𝑥𝑘⟩+ ‖∇𝑓(𝑦𝑘)‖2

(︂
−𝐴𝑘−1𝜆𝑘 −

𝑎𝑘𝜆𝑘
2

+ 𝑎2𝑘 −
𝑎2𝑘
2

)︂
.

In the first line after 1 we regroup the upper bound terms so it is clear we cancel all of the terms

𝑎𝑖𝑓(𝑦𝑖) in 2 . The second and third lines of 1 contain the weighted lower bounds. We canceled

the terms 1
2‖𝑥

*−𝑥1‖2. In 2 , we extract the summand with index 𝑘 in the second line after 1

and compare what remains in lines 2 and 3: the FTRL objective occurring at step 𝑘−1 evaluated

at the minimizer 𝑧𝑘−1 and at the point 𝑧𝑘. Because this FTRL problem is 1-strongly convex, we

have that the difference is bounded by −1
2‖𝑧𝑘 − 𝑧𝑘−1‖2 (note this is precisely one of the reasons

why we use FTRL with a strongly convex regularizer in the first place). In 3 , the aim is to group

all of the terms with ⟨∇𝑓(𝑦𝑘), ·⟩ and with ‖∇𝑓(𝑦𝑘)‖2, respectively. In order to do that, for the

first summand we used convexity and the equality 𝑦𝑘 = 𝑥𝑘 − 𝜆𝑘∇𝑓(𝑦𝑘). The second summand

uses the latter equality and 𝑧𝑘 = 𝑧𝑘−1 − 𝑎𝑘∇𝑓(𝑦𝑘). Finally, the third summand uses the latter

equality. At this point it is clear that defining 𝑥𝑘 so it satisfies 𝐴𝑘𝑥𝑘 = 𝐴𝑘−1𝑦𝑘−1 + 𝑎𝑘𝑧𝑘−1 will

cancel the first term of the discretization error after 3 . Recall that 𝐴𝑘 = 𝐴𝑘−1 + 𝑎𝑘 =
∑︀𝑘

𝑖=1 𝑎𝑖.

We can now maximize the choice of 𝑎𝑘 in order to have a fast convergence rate while keeping

the second summand non-positive. Thus, we obtain 𝑎𝑘 = (𝜆𝑘 +
√︁
𝜆2𝑘 + 8𝐴𝑘−1𝜆𝑘)/2.

Finally analyzing the initial gap similarly to what we did in Section 2.6 we obtain 𝐴1𝐺1 ≤
1
2‖𝑥

*−𝑥1‖2 and so 𝑓(𝑦𝑇 )−𝑓(𝑥*) ≤ 𝐺𝑇 ≤ ‖𝑥*−𝑥1‖2
2𝐴𝑇

. We could we solve the proximal subproblems

inexactly, say that we compute 𝑦𝑘 satisfying 𝑦𝑘 = 𝑥𝑘 − 𝜆𝑘∇𝑓(𝑦𝑘) + 𝑟𝑘, for ‖𝑟𝑘‖ ≤ ‖𝑥𝑘 − 𝑦𝑘‖, as

opposed to 𝑦𝑘 = 𝑥𝑘−𝜆𝑘∇𝑓(𝑦𝑘). Performing a similar analysis we can obtain a greater error term

multiplying ‖∇𝑓(𝑦𝑘)‖2 and still get non-positive discretization error at the expense of using a

slightly smaller learning rate 𝑎𝑘. We will not elaborate the details of this extension, cf. (Monteiro

and Svaiter, 2013). We note that the parameters 𝜆𝑘 can be arbitrarily large but in such case the

subproblems become harder.

Below, we summarize the algorithm with the exact proximal operator. For 𝑥0 = 𝑧0 and for

𝐴𝑘 =
∑︀𝑘

𝑖=1 𝑎𝑘, 𝑎𝑘 = (𝜆𝑘 +
√︁
𝜆2𝑘 + 8𝐴𝑘𝜆𝑘)/2, we compute:

𝑥𝑘+1 =
𝐴𝑘
𝐴𝑘+1

𝑦𝑘+
𝑎𝑘+1

𝐴𝑘+1

𝑧𝑘; 𝑦𝑘+1 = prox 𝜆𝑘𝑓 (𝑥𝑘+1); 𝑧𝑘+1 = 𝑧𝑘−𝑎𝑘+1∇𝑓(𝑦𝑘+1); for 𝑘 = 0 to 𝑇−1.

45



We note that one can obtain an accelerated method for smooth convex optimization by solving

each (strongly-convex) subproblem in linear time with a first-order method, like GD, cf. (Lin,

Mairal, and Harchaoui, 2015).

Some other variants and generalizations exist. There are several other notions of inexact

solutions of the proximal problem. The proximal operator can be generalized so it is defined

with respect to a general Bregman divergence 𝐷𝜓(·, 𝑥) as opposed to with 1
2‖ · −𝑥‖

2. For a

Euclidean norm, (Carmon, Jambulapati, et al., 2020) use a ball optimization oracle, whose

solution coincides with the proximal operator, for some 𝜆. Then they apply a similar approach

as in (Monteiro and Svaiter, 2013) and compute bounds on the corresponding 𝜆’s. The ball

optimization oracle can be implemented fast for problems with a stable Hessian in a ball around

each point, among others.
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Chapter 3

Acceleration in First-Order Riemannian
Optimization

In this chapter, we study the acceleration phenomenon on Riemannian manifolds and intro-

duce a global first-order method that achieves the same rates as accelerated gradient descent

in the Euclidean space for the optimization of smooth and geodesically convex (g-convex) or

strongly g-convex functions defined on the hyperbolic space or a subset of the sphere, up to

constants and log factors. This is the first method that is proved to achieve these rates globally

on functions defined on a Riemannian manifold ℳ other than the Euclidean space. Previous

works, on the one hand, did not achieve acceleration under g-convexity. On the other hand, un-

der strong g-convexity previous works only accelerate in a small neighborhood of the minimizer

(Zhang and Sra, 2018), or they have global rates which in the worse case equal the iterations

that Riemannian Gradient Descent takes to reach the aforementioned neighborhood plus the

iterations of the local accelerated algorithm (Ahn and Sra, 2020).1

As a proxy, we solve a constrained non-convex Euclidean problem in an accelerated way,

under a condition between convexity and quasar-convexity, of independent interest. Addition-

ally, for any Riemannian manifold of bounded sectional curvature, we provide reductions from

optimization methods for smooth and g-convex functions to methods for smooth and strongly

g-convex functions and vice versa.

3.1 Introduction

As we have seen in the previous chapter, acceleration in convex optimization is a phenomenon

that has drawn plenty of attention and has yielded many important results, since the renowned

Accelerated Gradient Descent (AGD) method of Nesterov (1983). In fact, recent efforts towards

understanding the acceleration phenomenon have yielded numerous new results going beyond

convexity or the standard oracle model, in a wide variety of settings (Allen-Zhu, 2017a; Allen-Zhu,

2018b; Allen-Zhu, 2018a; Allen-Zhu and Orecchia, 2019; Allen-Zhu, Qu, et al., 2016; Allen-Zhu,
1These two results essentially come from exploiting the fact that despite the deformations of the geometry, if we

restrict the optimization to a small neighborhood of the minimizer then these deformations are small and a strongly
geodesically-convex function still satisfies the Polyak-Lojasiewicz inequality (Karimi, Nutini, and Schmidt, 2016)
if viewed, via the inverse exponential map, from the tangent space of any point in the neighborhood.
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Li, et al., 2017; Carmon, Duchi, et al., 2017; Cohen, Diakonikolas, and Orecchia, 2018; Cutkosky

and Sarlós, 2019; Diakonikolas and Jordan, 2021; Diakonikolas and Orecchia, 2018; Gasnikov et

al., 2019b; Wang, Rao, and Mahoney, 2016). This surge of research that applies tools of convex

optimization to models going beyond convexity has been fruitful. One of these models is the

setting of geodesically convex Riemannian optimization. In this setting, the function to optimize

is geodesically convex (g-convex), i.e. convex restricted to any geodesic (cf. Definition 3.1.1).

Riemannian optimization, g-convex and non-g-convex alike, is an extensive area of research.

In recent years there have been numerous efforts towards obtaining Riemannian optimization

algorithms that share analogous properties to the more broadly studied Euclidean first-order

methods: deterministic (de Carvalho Bento, Ferreira, and Melo, 2017; Wei et al., 2016; Zhang

and Sra, 2016), stochastic (Hosseini and Sra, 2020; Khuzani and Li, 2017; Tripuraneni et al.,

2018), variance-reduced (Sato, Kasai, and Mishra, 2019a; Sato, Kasai, and Mishra, 2019b; Zhang,

Reddi, and Sra, 2016), adaptive (Kasai, Jawanpuria, and Mishra, 2019), saddle-point-escaping

(Criscitiello and Boumal, 2019; Sun, Flammarion, and Fazel, 2019; Zhang, Zhang, and Sra, 2018;

Zhou, Yuan, and Feng, 2019; Criscitiello and Boumal, 2020), projection-free (Weber and Sra,

2017; Weber and Sra, 2019), and online learning methods (Wang, Tu, et al., 2021), among others.

Unsurprisingly, Riemannian optimization has found many applications in machine learning, in-

cluding low-rank matrix completion (Cambier and Absil, 2016; Heidel and Schulz, 2018; Mishra

and Sepulchre, 2014; Tan et al., 2014; Vandereycken, 2013; Hou, Li, and Zhang, 2020), dictionary

learning (Cherian and Sra, 2017; Sun, Qu, and Wright, 2017; Bai, Jiang, and Sun, 2019), opti-

mization under orthogonality constraints (Edelman, Arias, and Smith, 1998), with applications

to Recurrent Neural Networks (Lezcano-Casado, 2019; Lezcano-Casado and Martínez-Rubio,

2019), robust covariance estimation in Gaussian distributions (Wiesel, 2012), Gaussian mixture

models (Hosseini and Sra, 2015), operator scaling (Allen-Zhu, Garg, et al., 2018) and general-

izations coming from symmetries of non-commutative groups (Bürgisser et al., 2019), projection

robust optimal transport (Lin, Zheng, et al., 2021) and sparse principal component analysis

(Genicot, Huang, and Trendafilov, 2015; Huang and Wei, 2021; Jolliffe, Trendafilov, and Uddin,

2003).

However, the acceleration phenomenon, largely celebrated in the Euclidean space, is still

not understood in Riemannian manifolds, although there has been some progress on this topic

recently (cf. Related work). This poses the following question, which we study in this chapter:

Can a Riemannian first-order method enjoy the same rates as AGD does in the Euclidean

space?

We provide an answer in the affirmative for functions defined on hyperbolic and spherical

spaces, up to constants depending on the sectional curvature constant 𝐾 and the initial distance

to a minimizer 𝑅, and up to log factors. For 𝐾 > 0 these constants are a small polynomial on

1/ cos(𝑅
√︀
|𝐾|) and for 𝐾 < 0 they are a small polynomial on cosh(𝑅

√︀
|𝐾|), the latter being an

exponential dependence. We discuss these constants in Section 3.7, which present a difference
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with respect to the Euclidean case. We note that if 𝑅
√︀
|𝐾| = 𝑂(1) we obtain the same rates

as AGD up to log factors while previous works could only achieve this full acceleration when

starting at a small neighborhood satisfying 𝑅
√︀
|𝐾| = 𝑂((𝐿/𝜇)−3/4). The main results of this

chapter are the following.

Main Results

• Full acceleration. We design algorithms that provably achieve the same rates of convergence

as AGD in the Euclidean space, up to constants and log factors. More precisely, we

obtain the rates ̃︀𝑂(𝐿/
√
𝜀) and 𝑂*(

√︀
𝐿/𝜇 log(𝜇/𝜀)) when obtaining 𝜀-minimizers of 𝐿-

smooth functions that are, respectively, g-convex and 𝜇-strongly g-convex, defined on the

hyperbolic space or a subset of the sphere. The notation ̃︀𝑂(·) and 𝑂*(·) omits log(𝐿/𝜀)

and log(𝐿/𝜇) factors, respectively, and constants with respect to 𝐾 and 𝑅. Previous

approaches only showed local results (Zhang and Sra, 2018) or obtained results with rates

in between the ones obtainable by Riemannian Gradient Descent (RGD) and AGD (Ahn

and Sra, 2020). Moreover, these previous works only apply to functions that are smooth

and strongly g-convex and not to smooth functions that are only g-convex. As a proxy, we

design an accelerated algorithm under a condition between convexity and quasar-convexity

in the constrained setting, which may be of independent interest.

• Reductions. We present two reductions for any Riemannian manifold of bounded sectional

curvature. Given an optimization method for smooth and g-convex functions they provide

a method for optimizing smooth and strongly g-convex functions, and vice versa.

It is often the case that methods and key geometric inequalities that apply to manifolds

with bounded sectional curvatures are obtained from the ones existing for the spaces of constant

extremal sectional curvature (Grove, Petersen, and Levy, 1997; Zhang and Sra, 2016; Zhang and

Sra, 2018). Consequently, our contribution is relevant not only because we establish an algorithm

achieving global acceleration on functions defined on a manifold other than the Euclidean space,

but also because understanding the constant sectional curvature case is an important step towards

understanding the more general case of obtaining algorithms that optimize g-convex functions,

strongly or not, defined on manifolds of bounded sectional curvature.

Structure of this chapter

We provide some definitions, notations, and related work in the rest of this section. We intro-

duce our algorithms and their ideas in Section 3.2, along with a sketch of the main optimization

proof. Section 3.3 contains the reductions from g-convex smooth problems to strongly g-convex

smooth problems. Section 3.5 contains the proofs of convergence of the accelerated algorithms.

Section 3.3 contains the proofs of the reductions and the corollaries showing how to apply them

to our algorithms. In Section 3.6, we prove our geometric lemmas that show how to reduce our
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Riemannian problem to the Euclidean non-convex problem that we solve in an accelerated way.

In Section 3.7 we comment on the constants of our algorithm and on hardness results.

Basic Geometric Definitions

We recall basic definitions of Riemannian geometry that we use in this chapter. For a thorough

introduction we refer to (Petersen, Axler, and Ribet, 2006). A Riemannian manifold (ℳ, g) is a

real smooth manifold ℳ equipped with a metric g, which is a smoothly varying inner product.

For 𝑥 ∈ℳ and any two vectors 𝑣, 𝑤 ∈ 𝑇𝑥ℳ in the tangent space ofℳ, the inner product ⟨𝑣, 𝑤⟩𝑥
is g(𝑣, 𝑤). For 𝑣 ∈ 𝑇𝑥ℳ, the norm is defined as usual ‖𝑣‖𝑥

def
=
√︀
⟨𝑣, 𝑣⟩𝑥. Typically, 𝑥 is known

given 𝑣 or 𝑤, so we will just write ⟨𝑣, 𝑤⟩ or ‖𝑣‖ if 𝑥 is clear from context. A geodesic is a curve

𝛾 : [0, 1]→ℳ of unit speed that is locally distance minimizing. A uniquely geodesic space is a

space such that for every two points there is one and only one geodesic that joins them. In such a

case the exponential map Exp𝑥 : 𝑇𝑥ℳ→ℳ and inverse exponential map Exp−1
𝑥 :ℳ→ 𝑇𝑥ℳ

are well defined for every pair of points, and are as follows. Given 𝑥, 𝑦 ∈ ℳ, 𝑣 ∈ 𝑇𝑥ℳ, and a

geodesic 𝛾 of length ‖𝑣‖ such that 𝛾(0) = 𝑥, 𝛾(1) = 𝑦, 𝛾′(0) = 𝑣/‖𝑣‖, we have that Exp𝑥(𝑣) = 𝑦

and Exp−1
𝑥 (𝑦) = 𝑣. Note, however, that Exp𝑥(·) might not be defined for each 𝑣 ∈ 𝑇𝑥ℳ. We

denote by 𝑑(𝑥, 𝑦) the distance between 𝑥 and 𝑦. Its value is the same as ‖Exp−1
𝑥 (𝑦)‖. Given a

2-dimensional subspace 𝑉 ⊆ 𝑇𝑥ℳ, the sectional curvature at 𝑥 with respect to 𝑉 is defined as

the Gauss curvature of the manifold Exp𝑥(𝑉 ) at 𝑥.

Notation

Let ℳ be a 𝑛-dimensional Riemannian manifold. Given two points 𝑥, 𝑦 ∈ ℳ and a vector

𝑣 ∈ 𝑇𝑥ℳ in the tangent space of 𝑥, we use the formal notation ⟨𝑣, 𝑦 − 𝑥⟩ def
= −⟨𝑣, 𝑥 − 𝑦⟩ def

=

⟨𝑣,Exp−1
𝑥 (𝑦)⟩. We call 𝐹 :ℳ→ R a function we want to optimize and that has at least one global

minimum at 𝑥*. We denote by 𝑥0 an initial point, inℳ, of an optimization algorithm. We denote

𝑅 ≥ 𝑑(𝑥0, 𝑥*) a bound on the initial distance to 𝑥*. We use the notation Exp𝑥0(�̄�(0, 𝑅)) ⊂ℳ to

mean thatℳ is such that Exp𝑥0 is defined on the closed ball �̄�(0, 𝑅) ⊂ 𝑇𝑥0ℳ. We useℳ𝐾 to

denote any manifold that is a subset of an 𝑛-dimensional complete and simply connected manifold

of constant sectional curvature 𝐾, namely a subset of the hyperbolic space or sphere (Petersen,

Axler, and Ribet, 2006), with the inherited metric, and such that Exp𝑥0(�̄�(0, 𝑅)) ⊂ℳ𝐾 . In such

a case, we use ℬ𝑅 for Exp𝑥0(�̄�(0, 𝑅)). Note that we are not making explicit the dependence on

𝑛, 𝑥0, ℳ𝐾 , and 𝐾. We want to work with the standard choice of uniquely geodesic manifolds

(Ahn and Sra, 2020; Liu, Shang, et al., 2017; Zhang and Sra, 2016; Zhang and Sra, 2018).

Therefore, if 𝐾 > 0 we restrict ourselves to 𝑅 < 𝜋/2
√
𝐾, so ℬ𝑅 is uniquely geodesic (it is

contained in an open hemisphere). Note that by definition 𝑥* ∈ ℬ𝑅. For 𝑀 ⊆ R𝑛, we denote

by ℎ : ℳ → 𝑀 a geodesic map (Kreyszig, 1991), which is a diffeomorphism such that the

image and the inverse image of a geodesic is a geodesic. Unless specified otherwise, we will have

ℎ(𝑥0) = 0𝑛. Given a point 𝑥 ∈ ℳ we use the notation �̃�
def
= ℎ(𝑥) and vice versa; any point in

𝑀 will use a tilde. Given a vector 𝑣 ∈ 𝑇𝑥ℳ, we call 𝑣 ∈ R𝑛 the vector of the same norm such
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that {�̃�+ �̃�𝑣|�̃� ∈ R+, �̃�+ �̃�𝑣 ∈𝑀} = {ℎ(Exp𝑥(𝜆𝑣))|𝜆 ∈ 𝐼 ⊆ R+}, for some interval 𝐼. Likewise,

given 𝑥 and a vector 𝑣 ∈ R𝑛, we define 𝑣 ∈ 𝑇𝑥ℳ. In the case of ℳ𝐾 , we call 𝒳 = ℎ(ℬ𝑅). The

big 𝑂 notations ̃︀𝑂(·) and 𝑂*(·) omit log(𝐿/𝜀) and log(𝐿/𝜇) factors, respectively, and constant

factors depending on 𝑅 and 𝐾.

We define now the main properties that will be assumed on the function 𝐹 to be minimized.

Definition 3.1.1 (Geodesic Convexity and Smoothness). Let 𝐹 :ℳ → R be a differen-

tiable function defined on a Riemannian manifold (ℳ, g). Given 𝐿 ≥ 𝜇 > 0, we say that 𝐹 is

𝐿-smooth, and respectively 𝜇-strongly g-convex, if for any two points 𝑥, 𝑦 ∈ℳ, 𝐹 satisfies

𝐹 (𝑦) ≤ 𝐹 (𝑥) + ⟨∇𝐹 (𝑥), 𝑦 − 𝑥⟩+ 𝐿

2
𝑑(𝑥, 𝑦)2, resp. 𝐹 (𝑦) ≥ 𝐹 (𝑥) + ⟨∇𝐹 (𝑥), 𝑦 − 𝑥⟩+ 𝜇

2
𝑑(𝑥, 𝑦)2.

We say 𝐹 is g-convex if the second inequality above, i.e. 𝜇-strong g-convexity, is satisfied with

𝜇 = 0. We have used the formal notation above for the subtraction of points in the inner product.

Our main technique consists of mapping the function domain to a subset 𝑀 of the Euclidean

space via a geodesic map ℎ. Given the gradient of a point 𝑥 ∈ℳ, convexity defines a lower bound

on the function that is affine over the tangent space of 𝑥, namely ℓ(𝑦) = 𝐹 (𝑥)+ ⟨∇𝐹 (𝑥), 𝑦−𝑥⟩ ≤
𝐹 (𝑦) and it implies a minimizer must be in the halfspace 𝐻 = {𝑦|⟨∇𝐹 (𝑥), 𝑦−𝑥⟩ ≤ 0}, since ℓ(·)
is greater than 𝐹 (𝑥) outside of 𝐻. This lower bound induces, via the geodesic map, a function on

𝑀 . And𝐻 is mapped to a halfspace𝐻 ′ in the Euclidean space, because {ℎ(𝑦)|⟨∇𝐹 (𝑥), 𝑦−𝑥⟩ = 0}
is mapped to a hyperplane by the definition of geodesic map. We find a lower bound of ℓ ∘ ℎ−1

that is affine over 𝐻 ′ and such that it is equal to 𝐹 (𝑥) at ℎ(𝑥), despite the geodesic map being

non-conformal, deforming distances, and breaking convexity, cf. Lemma 3.2.2. This allows to

aggregate the lower bounds easily in the Euclidean space by taking an average, in the same

spirit as mirror dual averaging algorithms do. We believe that effective lower bound aggregation

is key to achieving Riemannian acceleration and optimality and it has been the main hurdle

of previous algorithms. Using this strategy, we are able to define a continuous method that we

discretize using an approximate implementation of the implicit Euler method, achieving the same

rates as the Euclidean AGD, up to constants and log factors, for the optimization of g-convex

smooth functions. Our reductions take into account the deformations produced by the geometry

to generalize existing optimal Euclidean reductions (Allen-Zhu and Hazan, 2016; Allen-Zhu and

Orecchia, 2017). Applying them, we obtain an analogous algorithm for strongly g-convex and

smooth functions. Applying them again to the latter they yield an algorithm for g-convex smooth

functions with the rates of the same order as the first one.

Comparison with Related Work.

There are a number of works that study the problem of first-order acceleration in Riemannian

manifolds of bounded sectional curvature. The first study is (Liu, Shang, et al., 2017). In this

work, the authors develop an accelerated method with the same rates as AGD for both g-convex

and strongly g-convex functions, provided that at each step a given non-linear equation can
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be solved. No algorithm for solving this equation has been found and, in principle, it could

be intractable or infeasible. In (Alimisis et al., 2020) a continuous method analogous to the

continuous approach to accelerated methods is presented, but it is not known if there exists an

accelerated discretization of it. In (Alimisis et al., 2021), an algorithm presented is claimed to

enjoy an accelerated rate of convergence, but fails to provide convergence when the function value

gets below a potentially large constant that depends on the manifold and smoothness constant.

The work (Lin, Saparbayeva, et al., 2020) is inspired by accelerated algorithms and focuses on

adapting to the strong g-convex parameter but does not obtain accelerated algorithms. In (Huang

and Wei, 2019) an accelerated algorithm is presented but relying on strong geometric inequalities

that are not proved to be satisfied. Zhang and Sra (2018) obtain a local algorithm that optimizes

𝐿-smooth and 𝜇-strongly g-convex functions achieving the same rates as AGD in the Euclidean

space, up to constants. That is, the initial point needs to start close to the optimum, 𝑂((𝜇/𝐿)3/4)

close, to be precise2. Their approach consists of adapting Nesterov’s estimate sequence technique

by keeping a quadratic on 𝑇𝑥𝑖ℳ that induces on ℳ a regularized lower bound on 𝐹 (𝑥*) via

Exp𝑥𝑖(·). They build another lower bound by aggregating the information yielded by the gradient

∇𝐹 (𝑥𝑖) to it, and use a geometric lemma to find a quadratic in 𝑇𝑥𝑖+1ℳ whose induced function

lower bounds the previous one. Ahn and Sra (2020) generalize the previous algorithm and,

by using similar ideas for the lower bound, they adapt it to work globally, obtaining strictly

better rates than RGD, recovering the local acceleration of the previous paper, but not achieving

global rates comparable to the ones of AGD. In fact, they prove that their algorithm eventually

decreases the function value at a rate close to AGD but this can take as many iterations as

the ones needed by RGD to reach the neighborhood of the previous local algorithm. We take

a step back and focus on the constant sectional curvature case to provide a global algorithm

that achieves the same rates as AGD, up to constants on 𝑅, 𝐾, and log factors. It is common

to characterize the properties of spaces of bounded sectional curvature by using the ones of the

spaces of constant extremal sectional curvature (Grove, Petersen, and Levy, 1997; Zhang and

Sra, 2016; Zhang and Sra, 2018), which makes the study of the constant sectional curvature

case critical to the development of full accelerated algorithms in the general bounded sectional

curvature case. We also study g-convexity besides strong g-convexity. No previous accelerated

algorithms applied to this case. Because of the hardness of the geometry, our convergence rates

incur greater constants depending on 𝑅 and 𝐾 with respect to the Euclidean case. They are a

small polynomial on 1/ cos(𝑅
√︀
|𝐾|) in spherical spaces and cosh(𝑅

√︀
|𝐾|) in hyperbolic spaces,

the latter being an exponential dependence. It is not clear if these constants can be avoided

in fully accelerated algorithms and we provide a discussion about this in Section 3.7. We note
2This result essentially comes from exploiting the fact that despite the deformations of the geometry, if we

restrict the optimization to a small neighborhood of the minimizer then these deformations are small and a strongly
geodesically-convex function still satisfies the Polyak-Lojasiewicz inequality (Karimi, Nutini, and Schmidt, 2016)
with constant 𝑂(𝐿

𝜇
) if viewed, via the inverse exponential map, from the tangent space of any point in the

neighborhood. This does not hold true outside of the neighborhood
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Hamilton and Moitra (2021) showed a hardness result for the hyperbolic case with a strongly

g-convex function, if the function and gradient oracle is noisy, cf. Remark 3.7.3.

There are some related works that study Euclidean optimization. One of which is the approx-

imate duality gap technique (Diakonikolas and Orecchia, 2019b), which presents a unified view of

the analysis of first-order methods. It defines a continuous duality gap and by enforcing a natural

invariant, it obtains accelerated continuous dynamics and their discretizations for most classical

first-order methods. A derived work (Diakonikolas and Orecchia, 2018) obtains acceleration in

a fundamentally different way from previous acceleration approaches, namely using an approxi-

mate implicit Euler method for the discretization of the acceleration dynamics. Our convergence

analysis of Theorem 3.2.4 draws ideas from these two works. We will see in the sequel that,

for our manifolds of interest, g-convexity is related to a model known as quasar-convexity or

weak-quasi-convexity (Guminov and Gasnikov, 2017; Guminov, Nesterov, et al., 2019; Hinder,

Sidford, and Sohoni, 2020).

Remark 3.1.2 (Rates of related work). The local algorithm in (Zhang and Sra, 2018) requires

starting 𝑂((𝐿/𝜇)−3/4) close to the optimum and it finds an 𝜀-minimizer in 𝑂(
√︀
𝐿/𝜇 log(𝜇/𝜀)).

On the other hand RGD has a convergence rate of 𝑂(𝐿/𝜇 log(𝜇/𝜀)). Hence, we could run both

algorithms in parallel and restart them every few iterations from the best of the two points that both

algorithms yielded. In that case we would obtain the convergence rate 𝑂*(𝐿/𝜇+
√︀
𝐿/𝜇 log(𝜇/𝜀)).

Indeed, note that we would just compute twice as many gradients as if we run RGD but we perform

as well as if we first run RGD until it gets into the desired neighborhood and then we run the

local accelerated algorithm. And by 𝜇-strong g-convexity we can guarantee we are 𝜇�̄�2/2-close to

a minimizer if we are at an �̄�-minimizer so if we set �̄� so that 𝜇�̄�2/2 = 𝑂((𝐿/𝜇)−3/4) and run

RGD we reach the neighborhood after 𝑂((𝐿/𝜇) log(𝜇(𝐿/𝜇)3/4)) iterations.

We note that this mix of RGD and the local algorithm in (Zhang and Sra, 2018) enjoys the

same worse case guarantee of (Ahn and Sra, 2020). This latter work is a generalization of (Zhang

and Sra, 2018) that eventually accelerates, but a careful look at the paper and analysis reveals that

in order to reach accelerated rates it needs as much time as RGD takes to reach the accelerating

neighborhood of (Zhang and Sra, 2018). Indeed, they can guarantee that for their iterates 𝑦𝑡,

their algorithm converges at an accelerated rate 𝑓(𝑦𝑡)− 𝑓(𝑥*) ≤ 𝑂(𝑓(𝑦𝑡−1)− 𝑓(𝑥*))(1−
√︀
𝜇/𝐿))

when 𝑡 = Ω*( 1
log(1/𝜆)) = Ω*(𝐿/𝜇), where 𝜆 = Ω(1 − 𝜇/𝐿). A summary of rates is presented in

Table 3.1.

3.2 Algorithm

We study the minimization problem min𝑥∈ℳ𝐾
𝐹 (𝑥) with a gradient oracle, for a twice differ-

entiable smooth function 𝐹 :ℳ𝐾 → R that is g-convex or strongly g-convex, for an initial point

𝑥0, a minimizer 𝑥* of 𝐹 that is assumed to exist, and a constant 𝑅 > 𝑑(𝑥0, 𝑥
*). We recall ℳ𝐾

refers to any manifold of constant non-zero sectional curvature such that ℬ𝑅 = Exp𝑥0(�̄�(0, 𝑅)) ⊂
ℳ𝐾 . We work in this setting in this entire section. We perform optimization restricted to ℬ𝑅
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Table 3.1: Rates of related works for different problems. AGD is a Euclidean algorithm.
Our Algorithm 5 works in manifolds of constant sectional curvature 𝐾 ̸= 0. The rest of the
algorithms work in manifolds of sectional curvature that is bounded above and below.

Method 𝜇-st. g-convex g-convex

AGD (Nesterov, 1983) 𝑂(
√︀
𝐿/𝜇 log(𝜇/𝜀)) 𝑂(

√︀
𝐿/𝜀)

(Zhang and Sra, 2018) (only works locally) 𝑂(
√︀
𝐿/𝜇 log(𝜇/𝜀)) -

(Ahn and Sra, 2020) 𝑂*(𝐿/𝜇+
√︀
𝐿/𝜇 log(𝜇/𝜀)) -

(Ours) Remark 3.1.2 (RGD+(Zhang and Sra, 2018)) 𝑂*(𝐿/𝜇+
√︀
𝐿/𝜇 log(𝜇/𝜀)) -

(Ours) Corollary 3.3.2 and Algorithm 5 resp. 𝑂*(
√︀
𝐿/𝜇 log(𝜇/𝜀)) ̃︀𝑂(

√︀
𝐿/𝜀)

in order to control the deformations caused by the geometry. We defer the proofs of the lem-

mas and theorems in this and the following section to later sections. We assume without loss

of generality that the sectional curvature of ℳ𝐾 is 𝐾 ∈ {1,−1}, since for any other value of

𝐾 and any function 𝐹 : ℳ𝐾 → R defined on such a manifold, we can reparametrize 𝐹 by a

rescaling, so it is defined over a manifold of constant sectional curvature 𝐾 ∈ {1,−1}. The

parameters 𝐿, 𝜇 and 𝑅 are rescaled accordingly as a function of 𝐾, cf. Remark 3.6.1. We denote

the special cosine by C𝐾(·), which is cos(·) if 𝐾 = 1 and cosh(·) if 𝐾 = −1. For a geodesic

map ℎ : ℳ → 𝑀 , we define 𝒳 def
= ℎ(ℬ𝑅) ⊆ 𝑀 ⊆ R𝑛. We use classical geodesic maps for the

manifolds that we consider: the Gnomonic projection for 𝐾 = 1 and the Beltrami-Klein projec-

tion for 𝐾 = −1 (Greenberg, 1993). They map an open hemisphere and the hyperbolic space

of curvature 𝐾 ∈ {1,−1} to R𝑛 and 𝐵(0, 1) ⊆ R𝑛, respectively. We will derive our results from

the following characterization of ℎ (Greenberg, 1993). Let �̃�, 𝑦 ∈ 𝒳 be two points. Recall that

we denote 𝑥 = ℎ−1(�̃�), 𝑦 = ℎ−1(𝑦) ∈ ℬ𝑅. Then we have that 𝑑(𝑥, 𝑦), the distance between 𝑥 and

𝑦 with the metric ofℳ𝐾 , satisfies

C𝐾(𝑑(𝑥, 𝑦)) =
1 +𝐾⟨�̃�, 𝑦⟩√︀

1 +𝐾‖�̃�‖2 ·
√︀

1 +𝐾‖𝑦‖2
. (3.2.1)

Observe that the expression is symmetric with respect to rotations. In particular, 𝒳 is a closed

ball of some radius �̃�. Using �̃� = 0 and 𝑦 such that 𝑑(𝑥0, 𝑦) = 𝑅, we have C𝐾(𝑅) = (1 +

𝐾�̃�2)−1/2.

Consider a point 𝑥 ∈ ℬ𝑅 and the lower bound provided by the g-convexity assumption when

computing ∇𝐹 (𝑥). Dropping the 𝜇 term in case of strong g-convexity, this bound is affine over

𝑇𝑥ℬ𝑅. In order to define a duality gap, as we show in Section 3.2.1, we would like our algorithm

to aggregate effectively the lower bounds it computes during the course of the optimization. The

deformations of the geometry make the aggregation a difficult task, despite the fact that we have

a simple description of each individual lower bound: each of them is affine over 𝑇𝑥𝑖ℬ𝑅 but these

simple functions are defined on different tangent spaces. We deal with this problem by obtaining

a lower bound that is looser by a constant depending on 𝑅, and that is affine over 𝒳 ⊂ R𝑛. In
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this way the aggregation becomes easier: all of them are simple and are in the same space. Then,

we are able to combine this lower bound with decreasing upper bounds in the fashion some other

accelerated methods work in the Euclidean space (Allen-Zhu and Orecchia, 2017; Diakonikolas

and Orecchia, 2018; Diakonikolas and Orecchia, 2019b; Nesterov, 1983). Alternatively, we can

see the approach in this chapter as the constrained optimization problem of minimizing the

non-convex function 𝑓 : 𝒳 → R, �̃� ↦→ 𝐹 (ℎ−1(�̃�))

minimize 𝑓(�̃�), for �̃� ∈ 𝒳 .

In the rest of the section, we will focus on the g-convex case. For simplicity, instead of solving the

strongly g-convex case directly in an analogous way by finding a lower bound that is quadratic

over 𝒳 , we rely on the reductions of Section 3.3 to obtain the accelerated algorithm in this case.

The following two lemmas show that finding the affine lower bound is possible, and is defined

as a function of ∇𝑓(�̃�). We first gauge the deformations caused by the geodesic map ℎ. Distances

are deformed, the map ℎ is not conformal, and the image of the geodesic Exp𝑥(𝜆∇𝐹 (𝑥)) is not

mapped into the image of the geodesic �̃� + �̃�∇𝑓(�̃�), i.e. the direction of the gradient changes.

We are able to find the affine lower bound after bounding these deformations.

Lemma 3.2.1. [↓] Let 𝐾 ∈ {1,−1}. Let 𝑥, 𝑦 ∈ ℬ𝑅 be two different points, and in part 𝑏)

different from 𝑥0. Let �̃� be the angle ∠�̃�0�̃�𝑦, formed by the vectors �̃�0− �̃� and 𝑦− �̃�. Let 𝛼 be the

corresponding angle, the one between the vectors Exp−1
𝑥 (𝑥0) and Exp−1

𝑥 (𝑦). Assume without loss

of generality that �̃� ∈ span{𝑒1} and ∇𝑓(�̃�) ∈ span{𝑒1, 𝑒2} for the canonical orthonormal basis

{𝑒𝑖}𝑛𝑖=1. Let 𝑒𝑖 ∈ 𝑇𝑥ℳ𝐾 be the unit vector such that ℎ maps the image of the geodesic Exp𝑥(𝜆𝑒𝑖)

to the image of the geodesic �̃�+ �̃�𝑒𝑖, for 𝑖 = 1, . . . , 𝑛, and 𝜆, �̃� ≥ 0. Then, the following holds.

a) Distance deformation:

𝐾 C2
𝐾(𝑅) ≤ 𝐾 𝑑(𝑥, 𝑦)

‖�̃�− 𝑦‖
≤ 𝐾.

b) Angle deformation:

sin(𝛼) = sin(�̃�)

√︃
1 +𝐾‖�̃�‖2

1 +𝐾‖�̃�‖2 sin2(�̃�)
, cos(𝛼) = cos(�̃�)

√︃
1

1 +𝐾‖�̃�‖2 sin2(�̃�)
.

c) Gradient deformation:

∇𝐹 (𝑥) = (1 +𝐾‖�̃�‖2)∇𝑓(�̃�)1𝑒1 +
√︀

1 +𝐾‖�̃�‖2∇𝑓(�̃�)2𝑒2 and 𝑒𝑖 ⊥ 𝑒𝑗 for 𝑖 ̸= 𝑗.

And if 𝑣 ∈ 𝑇𝑥ℳ𝐾 is a vector that is normal to ∇𝐹 (𝑥), then 𝑣 is normal to ∇𝑓(𝑥).

The following uses the deformations described in the previous lemma to obtain the affine

lower bound on the function, given a gradient at a point �̃�. Note that Lemma 3.2.1.c) implies

that we have ⟨∇𝑓(�̃�), 𝑦− �̃�⟩ = 0 if and only if ⟨∇𝐹 (𝑥), 𝑦− 𝑥⟩ = 0. In the proof we lower bound,

generally, affine functions defined on 𝑇𝑥ℳ𝐾 by affine functions in the Euclidean space 𝒳 . This
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generality allows to obtain a result with constants that only depend on 𝑅. See Remark 3.7.2 for

a discussion on these constants.

Lemma 3.2.2. [↓] Let 𝐹 :ℳ𝐾 → R be a differentiable function and let 𝑓 = 𝐹 ∘ℎ−1. Then, there

are constants 𝛾n, 𝛾p ∈ (0, 1] depending on 𝑅 such that for all 𝑥, 𝑦 ∈ ℬ𝑅 satisfying ⟨∇𝑓(�̃�), 𝑦−�̃�⟩ ≠
0 we have:

𝛾p ≤
⟨∇𝐹 (𝑥), 𝑦 − 𝑥⟩
⟨∇𝑓(�̃�), 𝑦 − �̃�⟩

≤ 1

𝛾n
. (3.2.2)

In particular, if 𝐹 is g-convex we have the following condition, that we call tilted-convexity:

𝑓(�̃�) +
1

𝛾n
⟨∇𝑓(�̃�), 𝑦 − �̃�⟩ ≤ 𝑓(𝑦) if ⟨∇𝑓(�̃�), 𝑦 − �̃�⟩ ≤ 0,

𝑓(�̃�) + 𝛾p⟨∇𝑓(�̃�), 𝑦 − �̃�⟩ ≤ 𝑓(𝑦) if ⟨∇𝑓(�̃�), 𝑦 − �̃�⟩ ≥ 0.

(3.2.3)

Figure 3.1: Deformations of the map ℎ.

We provide intuition for the previous lemma through Figure 3.1. The geodesic that ∇𝐹 (𝑥)
induces on ℬ𝑅 corresponds to the geodesic that the vector on the right of ∇𝑓(�̃�) would induce

on 𝒳 , which is in a different direction than the one induced by ∇𝑓(�̃�). The angle and gradient

deformations of Lemma 3.2.1 allow to show that, for any direction, inducing a geodesic 𝛾, the

slope of the affine function induced by ∇𝑓(�̃�) on 𝒳 is within a constant factor 𝑐1 of the one of

the lower bound ℓ defined by ∇𝐹 (𝑥) in ℬ𝑅. Our main aim is to bound 𝐹 (𝑥*) and the shaded

area of each image represents where 𝑥* can be. On the right, we exemplify the deformation

on a geodesic 𝛾 passing through 𝑥. Initially, we have the affine lower bound ℓ, but the map ℎ

deforms the domain. To lower bound the function on the shaded region, we can use an affine

lower bound 1 . Its slope is within a constant factor of the one of the tangent line 3 by the

distance deformation of Lemma 3.2.1 and the factor 𝑐1—the latter bounds the change of the

directional derivatives, represented by the horizontal vector pointing to the left. This gives the

first line of (3.2.3), and the second one is analogous by using another affine function 2 .

The first inequality in tilted-convexity shows the affine lower bound, which can be used

to bound 𝑓(�̃�*) = 𝐹 (𝑥*). This first inequality, only applied to 𝑦 = �̃�* for a function 𝑓 :

R𝑛 → R, defines a model known in the literature as quasar-convexity or weak-quasi-convexity

(Guminov and Gasnikov, 2017; Guminov, Nesterov, et al., 2019; Hinder, Sidford, and Sohoni,
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2020), for which accelerated algorithms exist in the unconstrained case, provided smoothness is

also satisfied. However, to the best of our knowledge, there is no known algorithm for solving the

constrained case in an accelerated way. The condition in (3.2.3) is a relaxation of convexity that

is stronger than quasar-convexity. We will make use of (3.2.3) in order to obtain acceleration

in the constrained setting. This is of independent interest. Recall that we need the constraint

to guarantee bounded deformation due to the geometry. We also require smoothness of 𝑓 . We

prove in the following lemma that 𝑓 is as smooth as 𝐹 up to a constant depending on 𝑅.

Lemma 3.2.3. [↓] The function 𝑓 is 𝑂(𝐿)-smooth in 𝒳 = ℎ(ℬ𝑅) if 𝐹 :ℳ𝐾 → R is 𝐿-smooth

in ℬ𝑅.

Inspired by the approximate duality gap technique (Diakonikolas and Orecchia, 2019b) we

obtain accelerated continuous dynamics, for the optimization of the function 𝑓 . Then we achieve

acceleration by obtaining an implicit Euler discretization of the dynamics. Diakonikolas and

Orecchia (2018) obtained an accelerated method for convex functions by also making use of

an implicit Euler discretization. Their algorithm is fundamentally different from AGD and

techniques as Linear Coupling (Allen-Zhu and Orecchia, 2017) or Nesterov’s estimate sequence

(Nesterov, 1983). The latter techniques use a balancing gradient step at each iteration to com-

pensate the regret of an implicit or explicit dual algorithm, like mirror descent or Follow the

Regularized Leader. Our use of a looser lower bound makes this regret greater by a constant

factor and it complicates guaranteeing finding a gradient step within the constraints to compen-

sate this greater regret. We state here the accelerated theorem and provide a sketch of the proof

in Section 3.2.1.

Theorem 3.2.4. [↓] Let 𝑄 ⊆ R𝑛 be a closed convex set. Let 𝑓 : 𝑄 → R be an �̃�-smooth,

tilted-convex function with constants 𝛾n, 𝛾p ∈ (0, 1]. Assume there is a point �̃�* ∈ 𝑄 such that

∇𝑓(�̃�*) = 0. We can obtain an 𝜀-minimizer of 𝑓 using ̃︀𝑂([�̃�/(𝛾2n𝛾p𝜀)]
1/2) queries to the gradient

oracle of 𝑓 .

Finally, we have Riemannian acceleration as a consequence of Lemma 3.2.2, Lemma 3.2.3

and Theorem 3.2.4.

Theorem 3.2.5 (g-Convex Acceleration). [↓] Let 𝐹 :ℳ𝐾 → R be an 𝐿-smooth and g-convex

function with a point 𝑥* ∈ ℬ𝑅 satisfying ∇𝐹 (𝑥*) = 0. Algorithm 5 computes a point 𝑥𝑇 ∈ ℬ𝑅
satisfying 𝐹 (𝑥𝑇 )− 𝐹 (𝑥*) ≤ 𝜀 using ̃︀𝑂(

√︀
𝐿/𝜀) queries to the gradient oracle.

We provide a sketch of the main optimization theorem in the section below. The full proof

can be found in Section 3.5. Our use of geodesic maps was a choice we used to be able to ag-

gregate lower bounds. Our method showcases that an effective lower bound aggregation makes

possible to achieve global full acceleration. It suggests that acceleration could also be achieved

for functions defined on other manifolds by using our accelerated techniques if we can effectively

aggregate the lower bounds yielded by the gradient at each iteration to build a lower bound

on 𝐹 (𝑥*), similarly as in (3.2.4) below. We observe that if there is a geodesic map mapping a

manifold into a convex subset of the Euclidean space then the manifold must necessarily have
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constant sectional curvature, cf. Beltrami’s Theorem (Busemann and Phadke, 1984; Kreyszig,

1991). This means that lower bound aggregation in other manifolds would need to use a dif-

ferent kind of transformations. The field of comparison geometry allows to obtain properties of

spaces of bounded sectional curvature by using the properties of the spaces that have constant

curvature equal to the bounds of the former (Grove, Petersen, and Levy, 1997). Other Rieman-

nian optimization algorithms have used comparison theorems that allow to obtain convergence

bounds after computing the maximum possible deformations in spaces of extremal constant sec-

tional curvature and relating them to the spaces of bounded sectional curvature (Zhang and Sra,

2016; Zhang and Sra, 2018). The generalization to algorithms to optimize functions defined on

manifolds of bounded sectional curvature is a future direction of research.

3.2.1 Sketch of the proof of Theorem 3.2.4

Algorithm 5 Global Fully Accelerated g-Convex Minimization
Input: Initial point 𝑥0 ∈ ℳ𝐾 . Constants �̃�, 𝛾p, 𝛾n. Geodesic map ℎ satisfying (3.2.1) and

ℎ(𝑥0) = 0.
Smooth and g-convex function 𝐹 :ℳ𝐾 → R with a minimizer 𝑥* ∈ ℬ𝑅.
Bound on the distance to a minimum 𝑅 ≥ 𝑑(𝑥0, 𝑥

*). Accuracy 𝜀 and number of iterations
𝑇 .

1: 𝒳 def
= ℎ(ℬ𝑅) ⊆𝑀 ; 𝑓

def
= 𝐹 ∘ ℎ−1 and 𝜓(�̃�)

def
= 1

2‖�̃�‖
2 if �̃� ∈ 𝒳 , o/w 𝜓(�̃�) = +∞.

2: 𝑧0 ← ∇𝜓(�̃�0); 𝐴0 ← 0
3: for 𝑖 = 0 to 𝑇 − 1 do
4: 𝑎𝑖+1 ← (𝑖+ 1)𝛾2n𝛾p/2�̃�
5: 𝐴𝑖+1 ← 𝐴𝑖 + 𝑎𝑖+1

6: 𝜆← BinaryLineSearch(�̃�𝑖, 𝑧𝑖, 𝑓 ,𝒳 , 𝑎𝑖+1, 𝐴𝑖, 𝜀, �̃�, 𝛾n, 𝛾p) ◇ (cf. Algorithm 6)
7: �̃�𝑖 ← (1− 𝜆)�̃�𝑖 + 𝜆∇𝜓*(𝑧𝑖)
8: 𝜁𝑖 ← 𝑧𝑖 − (𝑎𝑖+1/𝛾n)∇𝑓(�̃�𝑖)
9: �̃�𝑖+1 ← (1− 𝜆)�̃�𝑖 + 𝜆∇𝜓*(𝜁𝑖) ◇

[︀
∇𝜓*(𝑝) = argmin𝑧∈𝒳 {‖𝑧 − 𝑝‖} = Π𝒳 (𝑝)

]︀
10: 𝑧𝑖+1 ← 𝑧𝑖 − (𝑎𝑖+1/𝛾n)∇𝑓(�̃�𝑖+1)
11: end for
12: return 𝑥𝑇 .

Inspired by the approximate duality gap technique (Diakonikolas and Orecchia, 2019b), we

let 𝛼𝑡 be an increasing function of time 𝑡, and denote 𝐴𝑡 =
∫︀ 𝑡
𝑡0
𝑑𝛼𝜏 =

∫︀ 𝑡
𝑡0
�̇�𝜏𝑑𝜏 . We define a

continuous method that keeps a solution �̃�𝑡, along with a differentiable upper bound 𝑈𝑡 on 𝑓(�̃�𝑡)

and a lower bound 𝐿𝑡 on 𝑓(�̃�*). In our case 𝑓 is differentiable so we can just take 𝑈𝑡 = 𝑓(�̃�𝑡).

The lower bound comes from

𝑓(�̃�*) ≥
∫︀ 𝑡
𝑡0
𝑓(�̃�𝜏 )𝑑𝛼𝜏

𝐴𝑡
+

∫︀ 𝑡
𝑡0

1
𝛾n
⟨∇𝑓(�̃�𝜏 ), �̃�* − �̃�𝜏 ⟩𝑑𝛼𝜏

𝐴𝑡
, (3.2.4)

after adding and subtracting a regularizer 𝜓, which is a 1-strongly convex function, and after

removing the unknown �̃�* by taking a minimum over 𝒳 . Note (3.2.4) comes from averaging

(3.2.3) for 𝑦 = �̃�*. Then, if we define the gap 𝐺𝑡 = 𝑈𝑡−𝐿𝑡 and design a method that forces 𝛼𝑡𝐺𝑡
to be non-increasing, we can deduce 𝑓(𝑥𝑡)− 𝑓(�̃�*) ≤ 𝐺𝑡 ≤ 𝛼𝑡0𝐺𝑡0/𝛼𝑡. By forcing 𝑑

𝑑𝑡(𝛼𝑡𝐺𝑡) = 0,
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we naturally obtain the following continuous dynamics, where 𝑧𝑡 is a mirror point and 𝜓* is the

Fenchel dual of 𝜓.

˙̃𝑧𝑡 = −
1

𝛾n
�̇�𝑡∇𝑓(�̃�𝑡); ˙̃𝑥𝑡 =

1

𝛾n
�̇�𝑡
∇𝜓*(𝑧𝑡)− �̃�𝑡

𝛼𝑡
; 𝑧𝑡0 = ∇𝜓*(�̃�𝑡0), �̃�𝑡0 ∈ 𝒳 . (3.2.5)

We note that except for the constant 𝛾n, these dynamics match the accelerated dynamics used

in the optimization of convex functions (Krichene, Bayen, and Bartlett, 2015; Diakonikolas and

Orecchia, 2018; Diakonikolas and Orecchia, 2019b). The AXGD algorithm (Diakonikolas and

Orecchia, 2018), designed for the accelerated optimization of convex functions, discretizes the

dynamics coming from the optimization of convex functions by using an approximate implemen-

tation of implicit Euler discretization. This has the advantage of not needing a gradient step per

iteration to compensate for some positive discretization error. In our case, the extra error we

incur by using a looser lower bound does not seem to be able to be compensated by a gradient

step in the constrained case, as other acceleration techniques like Linear Coupling (Allen-Zhu and

Orecchia, 2017) or Nesterov’s estimate sequence (Nesterov, 1983) do, so obtaining an approxi-

mate implicit Euler discretization proves to be a better approach. However, our dynamics are

different and in our case we must use tilted-convexity (3.2.3) instead of convexity. We are able

to obtain the following discretization coming from an approximate implicit Euler discretization:

⎧⎨⎩ �̃�𝑖 =
𝛾𝑖𝐴𝑖

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
�̃�𝑖 +

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n

∇𝜓*(𝑧𝑖); 𝜁𝑖 = 𝑧𝑖 −
𝑎𝑖+1

𝛾n
∇𝑓(�̃�𝑖)

�̃�𝑖+1 =
𝛾𝑖𝐴𝑖

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
�̃�𝑖 +

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n

∇𝜓*(𝜁𝑖); 𝑧𝑖+1 = 𝑧𝑖 −
𝑎𝑖+1

𝛾n
∇𝑓(�̃�𝑖+1)

(3.2.6)

where 𝛾𝑖 ∈ [𝛾p, 1/𝛾n] is a parameter, �̃�0 ∈ 𝒳 is an arbitrary point, 𝑧0 = ∇𝜓(�̃�0) and now 𝛼𝑡 is a

discrete measure and �̇�𝑡 is a weighted sum of Dirac delta functions �̇�𝑡 =
∑︀∞

𝑖=1 𝑎𝑖𝛿(𝑡−(𝑡0+𝑖−1)),
for 𝑎𝑖 > 0. However, not having convexity, in order to have per-iteration discretization error less

than �̂�/𝐴𝑇 , we require 𝛾𝑖 to be such that �̃�𝑖+1 satisfies

𝑓(�̃�𝑖+1)− 𝑓(�̃�𝑖) ≤ 𝛾𝑖⟨∇𝑓(�̃�𝑖+1), �̃�𝑖+1 − �̃�𝑖⟩+ 𝜀, (3.2.7)

where 𝜀 is chosen so that the accumulated discretization error is < 𝜀/2, after having performed

the steps necessary to obtain an 𝜀/2 minimizer. We would like to use (3.2.3) to find such a 𝛾𝑖
but we need to take into account that we only know �̃�𝑖+1 a posteriori. Indeed, using (3.2.3)

we conclude that setting 𝛾𝑖 to 1/𝛾n or 𝛾p then we either satisfy (3.2.7) or there is a point

𝛾𝑖 ∈ (𝛾p, 1/𝛾n) for which ⟨∇𝑓(�̃�𝑖+1), �̃�𝑖+1 − �̃�𝑖⟩ = 0, which satisfies the inequality for 𝜀 = 0.

Then, using smoothness of 𝑓 , the fact that ∇𝑓(�̃�*) = 0, and boundedness of 𝒳 we can guarantee

that a binary search finds a point satisfying (3.2.7) in 𝑂(log(�̃�𝑖/𝛾𝑛𝜀)) iterations. Each iteration

of the binary search requires to run (3.2.6), that is, one step of the discretization. Computing

the final discretization error, we obtain acceleration after choosing appropriate learning rates 𝑎𝑖.

Algorithm 5 contains the pseudocode of this algorithm along with the reduction of the problem

from minimizing 𝐹 to minimizing 𝑓 . We chose 𝜓(�̃�) def
= 1

2‖�̃�‖
2 + 𝑖𝒳 (�̃�) as our regularizer, where

𝑖𝒳 is the indicator function that takes value 0 in 𝒳 and +∞ otherwise.
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3.3 Reductions

The construction of reductions proves to be very useful in order to facilitate the design

of algorithms in different settings. Moreover, reductions are a helpful tool to infer new lower

bounds without extra ad hoc analyses. We present two reductions. Namely, we show how we

can minimize a g-convex smooth problem with an algorithm the minimizes strongly g-convex

functions, and vice versa. We will see in Corollary 3.3.2 and Example 3.3.6 that these reductions

preserve full acceleration. These reductions are generalizations of some reductions designed to

work in the Euclidean space (Allen-Zhu and Hazan, 2016; Allen-Zhu and Orecchia, 2017). The

reduction to strongly g-convex functions takes into account the effect of the deformation of the

space on the strong convexity of the function 𝐹𝑦(𝑥) = 𝑑(𝑥, 𝑦)2/2, for 𝑥, 𝑦 ∈ ℳ. It does not

entail an extra log(1/𝜀) factor. The reduction to g-convexity requires the rate of the algorithm

that applies to g-convex functions to be proportional to the squared distance between the initial

point and the optimum 𝑑(𝑥0, 𝑥
*)2 or to a bound 𝑅2. The proofs of the statements in this section

can be found in Section 3.3. We will use Timens(·) and Time(·) to denote the time algorithms

𝒜ns and 𝒜 below require, respectively, to perform the tasks we define below.

Theorem 3.3.1. Let ℳ be a Riemannian manifold, let 𝐹 : ℳ → R be an 𝐿-smooth and 𝜇-

strongly g-convex function, with a minimizer 𝑥*. Suppose we have an algorithm 𝒜ns to minimize

𝐹 , such that for any starting point 𝑥0 such that 𝑑(𝑥0, 𝑥*) ≤ 𝑅, it produces a point �̂�𝑇 in time

𝑇 = Timens(𝐿, 𝜇,𝑅) satisfying 𝐹 (�̂�𝑇 )− 𝐹 (𝑥*) ≤ 𝜇𝑅2/4. Then we can compute an 𝜀-minimizer

of 𝐹 in time 𝑂(Timens(𝐿, 𝜇,𝑅) log(𝜇/𝜀)).

Proof Let 𝒜ns be the algorithm in the statement of the theorem. By strong g-convexity of 𝐹

and the assumptions on 𝒜ns we have that �̂�𝑇 , the point computed by 𝒜ns, satisfies

𝜇

2
𝑑(�̂�𝑇 , 𝑥

*)2 ≤ 𝐹 (�̂�𝑇 )− 𝐹 (𝑥*) ≤
𝜇

2

𝑅2

2
,

after 𝑇 = Timens(𝐿, 𝜇,𝑅) queries to the gradient oracle. This implies 𝑑(�̂�𝑇 , 𝑥*)2 ≤ 𝑅2/2. We

perform this process 𝑟 def
= ⌈log(𝜇𝑅2/𝜀) − 1⌉ times. We use the previous output as input for

the next round. The distance bound to 𝑥* can be updated to a lower value. We denote 𝑅𝑖 the

distance bound from the input to 𝑥* at stage 𝑖 and we set its value to 𝑅𝑖 = 𝑅𝑖−1/
√
2, for 𝑅1 = 𝑅.

Thus, after 𝑟 stages we obtain a point �̂�𝑟𝑇 that satisfies

𝐹 (�̂�𝑟𝑇 )− 𝐹 (𝑥*) ≤
𝜇 ·𝑅2

𝑟

4
=

𝜇 ·𝑅2
1

4 · 2𝑟−1
≤ 𝜀.

And the total running time is Timens(𝐿, 𝜇,𝑅) · 𝑟 = 𝑂(Timens(𝐿, 𝜇,𝑅) log(𝜇/𝜀)).

Theorem 3.3.1 implies that if we forget about the strong g-convexity of a function and we treat

it as if it is just g-convex then we can run in stages an algorithm designed for optimizing g-convex

functions and still achieve acceleration. The fact that the function is strongly g-convex is only

used between stages. We exemplify the power of the reduction by applying it to Algorithm 5.
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Corollary 3.3.2. We can compute an 𝜀-minimizer of an 𝐿-smooth and 𝜇-strongly g-convex func-

tion 𝐹 :ℳ𝐾 → R in 𝑂*(
√︀
𝐿/𝜇 log(𝜇/𝜀)) queries to the gradient oracle.

We note that in the strongly convex case, by decreasing the function value by a factor we

can guarantee we decrease the distance to 𝑥* by another factor, so we can periodically recenter

the geodesic map to reduce the constants produced by the deformations of the geometry, as we

show in the following proof of the corollary.

Proof We can assume without loss of generality 𝐾 ∈ {−1, 1} as we did in Section 3.2. Let 𝑅 be

an upper bound on the distance between the initial point 𝑥0 and an optimizer 𝑥*, i.e. 𝑑(𝑥0, 𝑥*) ≤
𝑅. Note that ‖�̃�0 − �̃�*‖/𝑅 is bounded by a constant depending on 𝑅 by Lemma 3.2.1.a). Note

that 𝛾n and 𝛾p are constants depending on 𝑅 by Lemma 3.2.2. As any g-strongly convex function

is g-convex, by using Theorem 3.5.3 and Lemma 3.5.4 with 𝜀 = 𝜇𝑅
2

4 we obtain that Algorithm 5

obtains a 𝜇𝑅
2

4 -minimizer in at most

𝑇 = 𝑂

(︃
‖�̃�0 − �̃�*‖

𝑅

√︃
4𝐿

𝜇𝛾2n𝛾p
log

(︃
‖�̃�0 − �̃�*‖

𝑅

√︃
4𝐿

𝜇𝛾2n𝛾p

)︃)︃
= 𝑂

(︁√︀
𝐿/𝜇 log(𝐿/𝜇)

)︁
queries to the gradient oracle. Subsequent stages, i.e. calls to Algorithm 5, use the point

computed at the previous stage as its input. The distance bound to 𝑥* is updated, following

the proof of Theorem 3.3.1. Because the constant depending on 𝑅 in the running time of

the subroutine decreases when 𝑅 has a lower value, subsequent stages need a time which is

𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇)) as well. So we satisfy the assumption of Theorem 3.3.1 for Timens(𝐿, 𝜇,𝑅) =

𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇)). We conclude that given 𝜀 > 0 and running Algorithm 5 in stages, we obtain

an 𝜀-minimizer of 𝐹 in

𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇) log(𝜇/𝜀)) = 𝑂*(

√︀
𝐿/𝜇 log(𝜇/𝜀))

queries to the gradient oracle.

Note that each time we call Algorithm 5 we recenter the geodesic map. In order to perform

the method with these recentering steps, we need the function 𝐹 to be defined over at least

Exp𝑥0(�̄�(0, 𝑅 · (1+2−1/2))), since subsequent centers are only guaranteed to be ≤ 𝑅/
√
2 close to

𝑥*, and they could get slightly farther than 𝑅 from 𝑥0. But they are no farther than 𝑅+𝑅/
√
2

since 𝑑(𝑥0, �̂�𝑖𝑇 ) ≤ 𝑑(𝑥0, 𝑥*)+𝑑(𝑥*, �̂�𝑖𝑇 ) ≤ 𝑅+𝑅/
√
2, where �̂�𝑖𝑇 is the center at stage 𝑖, and where

𝑖 > 1.

Finally, we show the reverse reduction.

Theorem 3.3.3. Let ℳ be a Riemannian manifold of bounded sectional curvature, let 𝐹 :

ℳ → R be an 𝐿-smooth and g-convex function, and assume there is a point 𝑥* ∈ ℳ such

that ∇𝐹 (𝑥*) = 0. Let 𝑥0 be a starting point such that 𝑑(𝑥0, 𝑥*) ≤ 𝑅 and let Δ satisfy 𝐹 (𝑥0) −
𝐹 (𝑥*) ≤ Δ. Assume Exp𝑥0 is a diffeomorphism when restricted to �̄�(0, 𝑅) and that we have

an algorithm 𝒜 that given an 𝐿-smooth and 𝜇-strongly g-convex function 𝐹 : ℳ → R, with

minimizer in Exp𝑥0(�̄�(0, 𝑅)), and any initial point �̂�0 ∈ℳ, produces a point �̂� ∈ Exp𝑥0(�̄�(0, 𝑅))
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in time 𝑇 = Time(𝐿, 𝜇,ℳ, 𝑅) satisfying 𝐹 (�̂�) − min𝑥∈ℳ 𝐹 (𝑥) ≤ (𝐹 (�̂�0) − min𝑥∈ℳ 𝐹 (𝑥))/4.

Let 𝑇 = ⌈log2(Δ/𝜀)⌉ + 1. Then, we can compute an 𝜀-minimizer in time
∑︀𝑇−1

𝑡=0 Time(𝐿 +

2−𝑡Δ𝒦−
𝑅/𝑅

2, 2−𝑡Δ𝒦+
𝑅/𝑅

2,ℳ, 𝑅), where 𝒦+
𝑅 and 𝒦−

𝑅 are constants that depend on 𝑅 and the

bounds on the sectional curvature of ℳ.

We need two results before proving the theorem. We first state the following fact. Recall

that Exp𝑥0(�̄�(0, 𝑅)) ⊂ℳ. We define the following quantities

𝒦+
𝑅

def
=

{︃
1 if 𝐾max ≤ 0
√
𝐾max𝑅 cot(

√
𝐾max𝑅) if 𝐾max > 0

𝒦−
𝑅

def
=

{︃√
−𝐾min𝑅 coth(

√
−𝐾min𝑅) if 𝐾min < 0

1 if 𝐾min ≥ 0

Here 𝐾max and 𝐾min are the upper and lower bounds on the sectional curvature of the manifold

ℳ.

Fact 3.3.4. Letℳ be a manifold with sectional curvature bounded below and above by 𝐾min and

𝐾max, respectively. For a point 𝑥0 ∈ ℳ, assume Exp𝑥0 is a diffeomorphism when restricted to

�̄�(0, 𝑅). The function 𝑓 : ℳ → R defined as 𝑓(𝑥) = 1
2𝑑(𝑥, 𝑥0)

2 is 𝒦+
𝑅-g-strongly convex and

𝒦−
𝑅-smooth in Exp𝑥0(�̄�(0, 𝑅)).

The result regarding strong convexity can be found, for instance, in (Alimisis et al., 2020)

and it is a direct consequence of the following inequality, which can also be found in (Alimisis

et al., 2020):

𝑑(𝑦, 𝑥0)
2 ≥ 𝑑(𝑥, 𝑥0)2 − 2⟨Exp−1

𝑥 (𝑥0), 𝑦 − 𝑥⟩+𝒦+
𝑅𝑑(𝑥, 𝑦)

2,

along with the fact that grad 𝑓(𝑥) = −Exp−1
𝑥 (𝑥0). The result regarding smoothness is, similarly,

obtained from the following inequality:

𝑑(𝑦, 𝑥0)
2 ≤ 𝑑(𝑥, 𝑥0)2 − 2⟨Exp−1

𝑥 (𝑥0), 𝑦 − 𝑥⟩+𝒦−
𝑅𝑑(𝑥, 𝑦)

2,

which can be found in (Zhang and Sra, 2016) (Lemma 6). These inequalities are tight in spaces

of constant sectional curvature. Alternatively, one can derive these inequalities from upper and

lower bounds on the Hessian of 𝑓(𝑥) = 1
2𝑑(𝑥, 𝑥0), as it was done in (Lezcano-Casado, 2020)

(Theorem 3.15).

We prove now that the regularization makes the minimum to be closer to 𝑥0, so the as-

sumption of the theorem on 𝐹 holds for the functions we use. Define 𝑥𝑖+1 as the minimizer of

𝐹 (𝜇𝑖).

Lemma 3.3.5. We have 𝑑(𝑥𝑖+1, 𝑥0) ≤ 𝑑(𝑥*, 𝑥0).

Proof By the fact that 𝑥𝑖+1 is the minimizer of 𝐹 (𝜇𝑖) we have 𝐹 (𝜇𝑖)(𝑥𝑖+1)−𝐹 (𝜇𝑖)(𝑥*) ≤ 0. Note

that by g-strong convexity, equality only holds if 𝑥𝑖+1 = 𝑥* which only happens if 𝑥0 = 𝑥𝑖+1 = 𝑥*.
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By using the definition of 𝐹 (𝜇𝑖)(𝑥) = 𝐹 (𝑥) + 𝜇𝑖
2 𝑑(𝑥, 𝑥0)

2 we have:

𝐹 (𝑥𝑖+1) +
𝜇𝑖
2
𝑑(𝑥𝑖+1, 𝑥0)

2 − 𝐹 (𝑥*)− 𝜇𝑖
2
𝑑(𝑥*, 𝑥0)

2 ≤ 0

⇒ 𝑑(𝑥𝑖+1, 𝑥0) ≤ 𝑑(𝑥*, 𝑥0),

where in the last step we used the fact 𝐹 (𝑥𝑖+1)−𝐹 (𝑥*) ≥ 0 that holds because 𝑥* is the minimizer

of 𝐹 .

We note that previous techniques proved and used the fact that 𝑑(𝑥𝑖+1, 𝑥
*) ≤ 𝑑(𝑥0, 𝑥

*)

instead (Allen-Zhu and Hazan, 2016). But crucially, we need our former lemma in order to prove

the bound for our non-Euclidean case. Our variant can be applied to (Allen-Zhu and Hazan,

2016) to decrease the constants of their Euclidean reduction. Now we are ready to prove the

theorem.

Proof of Theorem 3.3.3. The algorithm is the following. We successively regularize the

function with strongly g-convex regularizers in this way 𝐹 (𝜇𝑖)(𝑥)
def
= 𝐹 (𝑥)+ 𝜇𝑖

2 𝑑(𝑥, 𝑥0)
2 for 𝑖 ≥ 0.

For each 𝑖 ≥ 0, we use the algorithm 𝒜 on the function 𝐹 (𝜇𝑖) for the time in the statement of

the theorem and obtain a point �̂�𝑖+1, starting from point �̂�𝑖, where �̂�0 = 𝑥0. The regularizers

are decreased exponentially 𝜇𝑖+1 = 𝜇𝑖/2 from 𝜇0 = Δ/𝑅2, until we reach roughly 𝜇𝑇 = 𝜀/𝑅2,

see below for the precise value. Fact 3.3.4 says that indeed 𝜇𝑖
2 𝑑(𝑥, 𝑥0)

2 is a strongly g-convex

regularizer.

Let’s see how this algorithm works. We start with �̂�0 = 𝑥0 and compute �̂�𝑖+1 using algorithm

𝒜 with starting point �̂�𝑖 and function 𝐹 (𝜇𝑖) for time Time(𝐿(𝑖), 𝜇(𝑖),ℳ, 𝑅), where 𝐿(𝑖) and 𝜇(𝑖)

are the smoothness and strong g-convexity parameters of 𝐹 (𝜇𝑖). We denote by 𝑥𝑖+1 the minimizer

of 𝐹 (𝜇𝑖). We pick 𝜇𝑖 = 𝜇𝑖−1/2 and we will choose later the value of 𝜇0 and the total number of

stages. By the assumption of the theorem on 𝒜, we have that

𝐹 (𝜇𝑖)(�̂�𝑖+1)− min
𝑥∈ℳ

𝐹 (𝜇𝑖)(𝑥) = 𝐹 (𝜇𝑖)(�̂�𝑖+1)− 𝐹 (𝜇𝑖)(𝑥𝑖+1) ≤
𝐹 (𝜇𝑖)(�̂�𝑖)− 𝐹 (𝜇𝑖)(𝑥𝑖+1)

4
. (3.3.1)

Define 𝐷𝑖
def
= 𝐹 (𝜇𝑖) (�̂�𝑖)− 𝐹 (𝜇𝑖) (𝑥𝑖+1) to be the initial objective distance to the minimum on

function 𝐹 (𝜇𝑖) before we call 𝒜 for the (𝑖 + 1)-th time. At the beginning, we have the upper

bound 𝐷0 = 𝐹 (𝜇0)(�̂�0)−min𝑥 𝐹
(𝜇0)(𝑥) ≤ 𝐹 (𝑥0)−𝐹 (𝑥*). For each stage 𝑖 ≥ 1, we compute that

𝐷𝑖 = 𝐹 (𝜇𝑖) (�̂�𝑖)− 𝐹 (𝜇𝑖) (𝑥𝑖+1)

1
= 𝐹 (𝜇𝑖−1) (�̂�𝑖)−

𝜇𝑖−1 − 𝜇𝑖
2

𝑑(𝑥0, �̂�𝑖)
2 − 𝐹 (𝜇𝑖−1) (𝑥𝑖+1) +

𝜇𝑖−1 − 𝜇𝑖
2

𝑑(𝑥0, 𝑥𝑖+1)
2

2
≤ 𝐹 (𝜇𝑖−1) (�̂�𝑖)− 𝐹 (𝜇𝑖−1) (𝑥𝑖) +

𝜇𝑖−1 − 𝜇𝑖
2

𝑑(𝑥0, 𝑥𝑖+1)
2

3
≤ 𝐷𝑖−1

4
+
𝜇𝑖
2
𝑑(𝑥0, 𝑥𝑖+1)

2
4
≤ 𝐷𝑖−1

4
+
𝜇𝑖
2
𝑑(𝑥0, 𝑥

*)2.

Above, 1 follows from the definition of 𝐹 (𝜇𝑖)(·) and 𝐹 (𝜇𝑖−1)(·); 2 follows from the fact that 𝑥𝑖
is the minimizer of 𝐹 (𝜇𝑖−1)(·). And we dropped the negative term −(𝜇𝑖−1 − 𝜇𝑖)𝑑(𝑥0, �̂�𝑖)/2. 3
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follows from the definition of 𝐷𝑖−1, the assumption on 𝒜, and the choice 𝜇𝑖 = 𝜇𝑖−1/2 for 𝑖 ≥ 1;

and 4 follows from Lemma 3.3.5. Now applying the above inequality recursively, we have

𝐷𝑇 ≤
𝐷0

4𝑇
+ 𝑑(𝑥0, 𝑥

*)2 · (𝜇𝑇
2

+
𝜇𝑇−1

8
+ · · · ) ≤ 𝐹 (𝑥0)− 𝐹 (𝑥*)

4𝑇
+ 𝜇𝑇 · 𝑑(𝑥0, 𝑥*)2. (3.3.2)

We have used the choice 𝜇𝑖 = 𝜇𝑖−1/2 for the second inequality. Lastly, we can prove that �̂�𝑇 ,

the last point computed, satisfies

𝐹 (�̂�𝑇 )− 𝐹 (𝑥*)
1
≤ 𝐹 (𝜇𝑇 )(�̂�𝑇 )− 𝐹 (𝜇𝑇 )(𝑥*) +

𝜇𝑇
2
𝑑(𝑥0, 𝑥

*)2

2
≤ 𝐹 (𝜇𝑇 )(�̂�𝑇 )− 𝐹 (𝜇𝑇 )(𝑥𝑇+1) +

𝜇𝑇
2
𝑑(𝑥0, 𝑥

*)2

3
= 𝐷𝑇 +

𝜇𝑇
2
𝑑(𝑥0, 𝑥

*)2
4
≤ 𝐹 (𝑥0)− 𝐹 (𝑥*)

4𝑇
+

3𝜇𝑇
2
𝑑(𝑥0, 𝑥

*)2.

We use the definition of 𝐹 (𝜇𝑇 ) in 1 and drop −𝜇𝑇
2 𝑑(𝑥0, �̂�𝑇 )

2. In 2 we use the fact that

𝑥𝑇+1 is the minimizer of 𝐹 (𝜇𝑇 ). The definition of 𝐷𝑇 is used in 3 . We use inequality (3.3.2)

for step 4 . Recall the assumption of the theorem 𝐹 (𝑥0) − 𝐹 (𝑥*) ≤ Δ. Finally, by choosing

𝑇 = ⌈log2(Δ/𝜀)⌉+ 1 and 𝜇0 = Δ/𝑅2 we obtain that the point �̂�𝑇 satisfies

𝐹 (�̂�𝑇 )− 𝐹 (𝑥*) ≤
𝐹 (𝑥0)− 𝐹 (𝑥*)

4Δ/𝜀
+

3𝜇0
8Δ/𝜀

𝑑(𝑥0, 𝑥
*)2 ≤ 𝜀

4
+

3𝜀

8
< 𝜀,

and can be computed in time
∑︀𝑇−1

𝑡=0 Time(𝐿 + 2−𝑡𝜇0𝒦−
𝑅, 2

−𝑡𝜇0𝒦+
𝑅,ℳ, 𝑅), since by Fact 3.3.4

the function 𝐹 (𝜇𝑡) is 𝐿+ 2−𝑡𝜇0𝒦−
𝑅 smooth and 2−𝑡𝜇0𝒦+

𝑅 g-strongly convex.

Example 3.3.6. Applying Theorem 3.3.3 to the algorithm in Corollary 3.3.2 we can optimize

𝐿-smooth and g-convex functions defined onℳ𝐾 with a gradient oracle complexity of ̃︀𝑂(𝐿/
√
𝜀).

We use the algorithm in Corollary 3.3.2 as the algorithm 𝒜 of the reduction of Theo-

rem 3.3.3. Given a manifold under consideration ℳ𝐾 , the assumption on 𝒜 is satisfied for

Time(𝐿, 𝜇,ℳ𝐾 , 𝑅) = 𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇)). Indeed, if Δ is a bound on the gap 𝐹 (𝑥0)− 𝐹 (𝑥*) =

𝐹 (𝑥0)−min𝑥∈ℳ𝐾
𝐹 (𝑥) = 𝐹 (𝑥0)−min𝑥∈Exp𝑥0 (�̄�(0,𝑅)) 𝐹 (𝑥) for some 𝜇-strongly g-convex 𝐹 , then

we know that 𝑑(𝑥0, 𝑥*)2 ≤ 2Δ
𝜇 by 𝜇-strong g-convexity. By calling the algorithm in Corollary 3.3.2

with 𝜀 = Δ
4 we require a time that is

𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇) log(𝜇 · 𝑑(𝑥0, 𝑥*)2/(Δ/4))) = 𝑂(

√︀
𝐿/𝜇 log(𝐿/𝜇) log(𝜇 · (2Δ/𝜇)/(Δ/4)))

= 𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇)).
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Let 𝑇 = ⌈log2(Δ/𝜀)⌉+ 1. The reduction of Theorem 3.3.3 gives an algorithm with rates

𝑇−1∑︁
𝑡=0

Time(𝐿+ 2−𝑡𝜇0𝒦−
𝑅, 2

−𝑡𝜇0𝒦+
𝑅,ℳ𝐾 , 𝑅)

1
= 𝑂

(︃
𝑇−1∑︁
𝑡=0

√︃
𝒦−
𝑅

𝒦+
𝑅

+
𝐿

2−𝑡𝒦+
𝑅Δ/𝑅

2
· log

(︂
𝒦−
𝑅

𝒦+
𝑅

+
𝐿

2−𝑡𝒦+
𝑅Δ/𝑅

2

)︂)︃
2
= 𝑂

(︃(︃√︃
𝒦−
𝑅

𝒦+
𝑅

log(Δ/𝜀) +
𝑇−1∑︁
𝑡=0

√︃
𝐿

2−𝑡𝒦+
𝑅Δ/𝑅

2

)︃
log

(︂
𝒦−
𝑅

𝒦+
𝑅

+
𝐿

𝒦+
𝑅𝜀

)︂)︃
3
= 𝑂

(︃(︃√︃
𝒦−
𝑅

𝒦+
𝑅

log(Δ/𝜀) +

√︃
𝐿

𝒦+
𝑅𝜀

)︃
log

(︂
𝒦−
𝑅

𝒦+
𝑅

+
𝐿

𝒦+
𝑅𝜀

)︂)︃
4
= ̃︀𝑂(

√︀
𝐿/𝜀)

In 1 we write down the definition and use the value 𝜇0 = Δ/𝑅2. In 2 we have used Minkowski’s

inequality
√
𝑎+ 𝑏 ≤

√
𝑎 +
√
𝑏. We added up the first group of summands. For the log factor,

we upper bounded 𝐿/(2−𝑡𝒦+
𝑅Δ/𝑅

2) = 𝑂(𝐿/𝒦+
𝑅𝜀), for 𝑡 < 𝑇 . In 3 we used the fact that√︀

1/𝜀+
√︀

1/2𝜀+ · · · = 𝑂(
√︀
1/𝜀), along with the fact 𝜀/2𝑅2 ≤ 2−(𝑇−1)𝜇0 ≤ 𝜀/𝑅2. Note that by

𝐿-smoothness and the diameter being 2𝑅, we have Δ ≤ 2𝐿𝑅2 so
√︁
𝒦−
𝑅/𝒦

+
𝑅 log(Δ/𝜀) = ̃︀𝑂(1).

We applied this in 4 .

Note that this reduction cannot be applied to the locally accelerated algorithm in (Zhang

and Sra, 2018), that we discussed in the related work section. The reduction runs in stages

by regularizing each time with a strongly g-convex regularizer whose parameter decreases expo-

nentially until we use a regularizer with 𝑂(𝜀) maximum function value. The local assumption

required by the algorithm in (Zhang and Sra, 2018) on the closeness to the minimum cannot be

guaranteed. In (Ahn and Sra, 2020), the authors give a global algorithm whose rates are strictly

better than RGD. The reduction could be applied to a version of this algorithm, that works with

a ball constraint, and one would obtain a method for smooth and g-convex functions defined on

manifolds of bounded sectional curvature and whose rates are strictly better than RGD.

3.4 Discussion

We proposed an algorithm with the same rates as AGD, for the optimization of smooth and

strongly g-convex functions, up to constants and log factors, while previous approaches essentially

only reached this for a ball around the minimizer of radius 𝑂((𝜇/𝐿)3/4). Our algorithm also

applies to g-convex functions while previous accelerated algorithms did not apply. We focused on

hyperbolic and spherical spaces, that have constant sectional curvature. The study of geometric

properties for this is often employed to conclude that a space of bounded sectional curvature

satisfies a property that is in between the ones for the cases of constant extremal sectional

curvature. Several previous algorithms have been developed for the general case by utilizing this

philosophy, for instance (Ahn and Sra, 2020; Ferreira, Louzeiro, and da Fonseca Prudente, 2019;

Wang, Li, and Yao, 2015; Zhang and Sra, 2016; Zhang and Sra, 2018). Using the techniques and
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insights developed in this work is a promising direction of research to design an algorithm with

the same rates as AGD for manifolds of bounded sectional curvature.

The key technique of our algorithm is the effective lower bound aggregation. Indeed, lower

bound aggregation is the main hurdle to obtain accelerated first-order methods defined on Rie-

mannian manifolds. Whereas the process of obtaining decreasing upper bounds on the function

works similarly as in the Euclidean space—the same approach of locally minimizing the upper

bound given by the smoothness assumption is used—obtaining adequate lower bounds proves to

be a difficult task. We usually want a simple lower bound such that it, or a regularized version

of it, can be easily optimized globally. We also want that the lower bound combines the knowl-

edge that the g-convexity or strong g-convexity provides for all the queried points, commonly an

average. These Riemannian convexity assumptions provide simple lower bounds, namely linear

or quadratic, but each with respect to each of the tangent spaces of the queried points only.

The deformations of the space complicate the aggregation of the lower bounds. We deal with

this problem by finding appropriate lower bounds via the use of a geodesic map and takes into

account the deformations incurred to derive a fully accelerated algorithm. We also used other

tools for designing the accelerated algorithm. We worked with a relaxation of convexity that

allowed to perform a binary search to reduce the discretization error. We had to use an implicit

discretization of some accelerated continuous dynamics, since at least the vanilla application of

usual approaches like Linear Coupling (Allen-Zhu and Orecchia, 2017) or Nesterov’s estimate

sequence (Nesterov, 1983), that can be seen as a forward Euler discretization of the accelerated

dynamics combined with a balancing gradient step (Diakonikolas and Orecchia, 2019b), did not

work in our constrained case. We interpret that the difficulty arises from trying to keep the

gradient step inside the constraints while being able to compensate for a lower bound that is

looser by a constant factor.

3.5 Acceleration: Proofs of Theorem 3.2.4 and Theorem 3.2.5

In this section we will make use of the approximate duality gap technique (Diakonikolas and

Orecchia, 2019b), which is we presented in Section 2.6 applied to smooth convex optimization

and that is a technique that provides a structure to design and prove first-order methods and

their guarantees for the optimization of convex problems. We take inspiration from these ideas

to apply them to the non-convex problem we have at hand Theorem 3.2.4, as it was sketched in

Section 3.2.1.

For simplicity, we will use 𝜓(�̃�) = 1
2‖�̃�‖

2+𝑖𝑄(�̃�) in Algorithm 5 as regularizer. Here 𝑖𝑄(𝑥) = 0

if 𝑥 ∈ 𝑄 and 𝑖𝑄(𝑥) = +∞ otherwise. The gradient of the Fenchel dual of 𝜓(·) is ∇𝜓*(𝑧) =

argmin𝑧′∈𝑄{‖𝑧′ − 𝑧‖}, that is, the Euclidean projection Π𝑄(𝑧) of the point 𝑧 onto 𝑄. Note

that when we apply Theorem 3.2.4 to Theorem 3.2.5 our constraint 𝑄 will be 𝒳 , that is, a

ball centered at 0𝑛 of radius �̃�, so the projection of a point 𝑧 outside of 𝒳 will be the vector

normalization �̃�𝑧/‖𝑧‖. Any continuously differentiable strongly convex 𝜓 would work, provided
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that ∇𝜓*(𝑧) is easily computable, preferably in closed form. Note that by the Fenchel-Moreau

theorem we have for any such map that 𝜓** = 𝜓.

We recall we assume that 𝑓 satisfies tilted-convexity (3.2.3):

𝑓(�̃�) +
1

𝛾n
⟨∇𝑓(�̃�), 𝑦 − �̃�⟩ ≤ 𝑓(𝑦) if ⟨∇𝑓(�̃�), 𝑦 − �̃�⟩ ≤ 0,

𝑓(�̃�) + 𝛾p⟨∇𝑓(�̃�), 𝑦 − �̃�⟩ ≤ 𝑓(𝑦) if ⟨∇𝑓(�̃�), 𝑦 − �̃�⟩ ≥ 0.

We define a continuous method, similarly to how we proceeded in Section 2.6, and we dis-

cretize it with an approximate implementation of the implicit Euler method. Let �̃�𝑡 be the

solution obtained by the algorithm at time 𝑡. The duality gap is also defined 𝐺𝑡
def
= 𝑈𝑡 − 𝐿𝑡 as

the difference between a differentiable upper bound 𝑈𝑡 on the function at the current point and

a lower bound on 𝑓(�̃�*). Since in our case 𝑓 is differentiable we use 𝑈𝑡
def
= 𝑓(�̃�𝑡).

Note that for a global minimum �̃�* of 𝑓 and any other point �̃� ∈ 𝑄, we have ⟨∇𝑓(�̃�), �̃�*−�̃�⟩ ≤
0. Otherwise, we would obtain a contradiction since by tilted-convexity (3.2.3) we would have

𝑓(�̃�) < 𝑓(�̃�) + 𝛾p⟨∇𝑓(�̃�), �̃�* − �̃�⟩ ≤ 𝑓(�̃�*).

Therefore, in order to define an appropriate lower bound, we will make use of the inequality

𝑓(�̃�*) ≥ 𝑓(�̃�) + 1
𝛾n
⟨∇𝑓(�̃�), �̃�* − �̃�⟩, for any �̃� ∈ 𝑄, which holds true by tilted-convexity (3.2.3),

for 𝑦 = �̃�*. Combining this inequality for all the points visited by the continuous method we

have

𝑓(�̃�*) ≥
∫︀ 𝑡
𝑡0
𝑓(�̃�𝜏 )𝑑𝛼𝜏

𝐴𝑡
+

∫︀ 𝑡
𝑡0

1
𝛾n
⟨∇𝑓(�̃�𝜏 ), �̃�* − �̃�𝜏 ⟩𝑑𝛼𝜏

𝐴𝑡
.

Adding and subtracting the strongly convex regularizer 𝐷𝜓(�̃�
*, �̃�𝑡0), taking a minimum over 𝒳

to remove the dependence on 𝒳 and rescaling to avoid problems at 𝑡0, similarly to the approach

in Section 2.6 we obtain the following lower bound:

𝑓(�̃�*) ≥ 𝐿𝑡
def
=

∫︀ 𝑡
𝑡0
𝑓(�̃�𝜏 )𝑑𝛼𝜏

𝛼𝑡
+

min�̃�∈𝑄

{︁∫︀ 𝑡
𝑡0
⟨ 1
𝛾n
∇𝑓(�̃�𝜏 ), �̃�− �̃�𝜏 ⟩𝑑𝛼𝜏 +𝐷𝜓(�̃�, �̃�𝑡0)

}︁
𝛼𝑡

+
(𝛼𝑡 −𝐴𝑡)𝑓(�̃�*)−𝐷𝜓(�̃�

*, �̃�𝑡0)

𝛼𝑡
.

(3.5.1)

Let 𝑧𝑡 = ∇𝜓(�̃�𝑡0) −
∫︀ 𝑡
𝑡0

1
𝛾n
∇𝑓(�̃�𝜏 )𝑑𝛼𝜏 . Then, by Fact 2.1.6, we can compute the optimum

�̃� ∈ 𝑄 above as

∇𝜓*(𝑧𝑡) = argmin
�̃�∈𝑄

{︂∫︁ 𝑡

𝑡0

⟨ 1
𝛾n
∇𝑓(�̃�𝜏 ), �̃�− �̃�𝜏 ⟩𝑑𝛼𝜏 +𝐷𝜓(�̃�, �̃�𝑡0)

}︂
. (3.5.2)

Recalling 𝑈𝑡 = 𝑓(�̃�𝑡) and using (3.5.1) and (3.5.2) we obtain:

𝑑

𝑑𝑡
(𝛼𝑡𝐺𝑡) =

𝑑

𝑑𝑡
(𝛼𝑡𝑓(�̃�𝑡))− �̇�𝑡𝑓(�̃�𝑡)− �̇�𝑡

1

𝛾n
⟨∇𝑓(�̃�𝑡),∇𝜓*(𝑧𝑡)− �̃�𝑡⟩

=
1

𝛾n
⟨∇𝑓(�̃�𝑡), 𝛾n𝛼𝑡 ˙̃𝑥𝑡 − �̇�𝑡(∇𝜓*(𝑧𝑡)− �̃�𝑡)⟩.

Thus, to satisfy the invariant 𝑑
𝑑𝑡(𝛼𝑡𝐺𝑡) = 0, it is enough to set 𝛾n𝛼𝑡 ˙̃𝑥𝑡 = �̇�𝑡(∇𝜓*(𝑧𝑡) − �̃�𝑡),
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yielding the following continuous accelerated dynamics

˙̃𝑧𝑡 = −
1

𝛾n
�̇�𝑡∇𝑓(�̃�𝑡); ˙̃𝑥𝑡 =

1

𝛾n
�̇�𝑡
∇𝜓*(𝑧𝑡)− �̃�𝑡

𝛼𝑡
; (3.5.3)

for arbitrary �̃�𝑡0 ∈ 𝑄 and for 𝑧𝑡0 = ∇𝜓(�̃�𝑡0). Now we proceed to discretize the dynamics, so

from now on we will use a discrete measure 𝛼𝑡, as we described above. We set 𝑡0 to 1. Let

𝐸𝑖+1
def
= 𝐴𝑖+1𝐺𝑖+1 −𝐴𝑖𝐺𝑖 be the discretization error. Then we have

𝐺𝑡 =
𝐴1

𝐴𝑡
𝐺1 +

∑︀𝑡−1
𝑖=1 𝐸𝑖+1

𝐴𝑡
.

Lemma 3.5.1. If we have

𝑓(�̃�𝑖+1)− 𝑓(�̃�𝑖) ≤ 𝛾𝑖⟨∇𝑓(�̃�𝑖+1), �̃�𝑖+1 − �̃�𝑖⟩+ 𝜀𝑖, (3.5.4)

for some 𝛾𝑖, 𝜀𝑖 ≥ 0, then the discretization error satisfies

𝐸𝑖+1 ≤ ⟨∇𝑓(�̃�𝑖+1), (𝐴𝑖𝛾𝑖 +
𝑎𝑖+1

𝛾n
)�̃�𝑖+1 − 𝛾𝑖𝐴𝑖�̃�𝑖 −

𝑎𝑖+1

𝛾n
∇𝜓*(𝑧𝑖+1))⟩ −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1) +𝐴𝑖𝜀𝑖.

Proof In a similar way to (Diakonikolas and Orecchia, 2018), we could compute the discretiza-

tion error as the difference between the gap and the gap computed allowing continuous integration

rules in the integrals that it contains. However, we will directly bound 𝐸𝑖+1 as 𝐴𝑖+1𝐺𝑖+1−𝐴𝑖𝐺𝑖
instead. Recall that in discrete time we have 𝛼𝑖 = 𝐴𝑖 so the definition of the lower bound in

discrete time becomes the following, by combining (3.5.1) and (3.5.2):

𝐿𝑖 =

𝑖∑︁
𝑗=1

𝑎𝑗𝑓(�̃�𝑗) +

𝑖∑︁
𝑗=1

⟨
𝑎𝑗
𝛾n
∇𝑓(�̃�𝑗),∇𝜓*(𝑧𝑖)− �̃�𝑗⟩+𝐷𝜓(∇𝜓*(𝑧𝑖), �̃�𝑡0)−𝐷𝜓(�̃�

*, �̃�𝑡0).

Hence, using the definition of 𝐺𝑖, 𝑈𝑖, 𝐿𝑖 we have

𝐴𝑖+1𝐺𝑖+1 −𝐴𝑖𝐺𝑖

= (𝐴𝑖+1𝑓(�̃�𝑖+1)−𝐴𝑖𝑓(�̃�𝑖))−𝐴𝑖+1𝐿𝑖+1 +𝐴𝑖𝐿𝑖

1
= (𝐴𝑖𝑓(�̃�𝑖+1)−𝐴𝑖𝑓(�̃�𝑖) + 𝑎𝑖+1𝑓(�̃�𝑖+1))

−
𝑖+1∑︁
𝑗=1

𝑎𝑗𝑓(�̃�𝑗)−
𝑖+1∑︁
𝑗=1

𝑎𝑗
𝛾n
⟨∇𝑓(�̃�𝑗),∇𝜓*(𝑧𝑖+1)− �̃�𝑗⟩ −𝐷𝜓(∇𝜓*(𝑧𝑖+1), �̃�𝑡0)

+

𝑖∑︁
𝑗=1

𝑎𝑗𝑓(�̃�𝑗) +

𝑖∑︁
𝑗=1

𝑎𝑗
𝛾n
⟨∇𝑓(�̃�𝑗),∇𝜓*(𝑧𝑖)− �̃�𝑗⟩+𝐷𝜓(∇𝜓*(𝑧𝑖), �̃�𝑡0)

2
= 𝐴𝑖(𝑓(�̃�𝑖+1)− 𝑓(�̃�𝑖))− ⟨

𝑎𝑖+1

𝛾n
∇𝑓(�̃�𝑖+1),∇𝜓*(𝑧𝑖+1)− �̃�𝑖+1⟩

+

𝑖∑︁
𝑗=1

⟨
𝑎𝑗
𝛾n
∇𝑓(�̃�𝑗),∇𝜓*(𝑧𝑖)−∇𝜓*(𝑧𝑖+1)⟩

[−⟨∇𝜓(�̃�𝑡0),∇𝜓*(𝑧𝑖)−∇𝜓*(𝑧𝑖+1)⟩+ 𝜓(∇𝜓*(𝑧𝑖))− 𝜓(∇𝜓*(𝑧𝑖+1))]
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3
= 𝐴𝑖(𝑓(�̃�𝑖+1)− 𝑓(�̃�𝑖))− ⟨

𝑎𝑖+1

𝛾n
∇𝑓(�̃�𝑖+1),∇𝜓*(𝑧𝑖+1)− �̃�𝑖+1⟩ −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1)

4
≤ ⟨∇𝑓(�̃�𝑖+1), (𝐴𝑖𝛾𝑖 +

𝑎𝑖+1

𝛾n
)�̃�𝑖+1 − 𝛾𝑖𝐴𝑖�̃�𝑖 −

𝑎𝑖+1

𝛾n
∇𝜓*(𝑧𝑖+1)⟩ −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1) +𝐴𝑖𝜀𝑖.

In 1 we write down the definitions of 𝐿𝑖+1 and 𝐿𝑖 and split the first summand so it is clear that in

2 we cancel all the 𝑎𝑗𝑓(�̃�𝑗). In 2 we also cancel some terms involved in the inner products, we

write the definitions of the Bregman divergences and cancel some of their terms. For equality 3 ,

we recall 𝑧𝑖 = ∇𝜓(�̃�𝑡0)−
∑︀𝑖

𝑗=1

𝑎𝑗
𝛾n
∇𝑓(�̃�𝑗) so we use this fact and 𝜓*(𝑧) = ⟨∇𝜓*(𝑧), 𝑧⟩−𝜓(∇𝜓*(𝑧))

(which holds by Fact 2.1.6) for 𝑧 = 𝑧𝑖 and 𝑧 = 𝑧𝑖+1 to conclude that the last two lines equal

−𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1). Inequality 4 uses (3.5.4).

We show now how to cancel out the discretization error by an approximate implementation of

implicit Euler discretization of (3.5.3). Note that we need to take into account the tilted-convexity

assumption (3.2.3) instead of the usual convexity assumption. According to the previous lemma,

we can set �̃�𝑖+1 so that the right hand side of the inner product in the bound of 𝐸𝑖+1 is 0.

Assume for the moment, that the point �̃�𝑖+1 we are going to compute satisfies the assumption of

the previous lemma for some 𝛾𝑖 ∈ [𝛾p, 1/𝛾n]. Thus, the implicit equation that defines the ideal

method we would like to have is

�̃�𝑖+1 =
𝛾𝑖𝐴𝑖

𝐴𝑖𝛾𝑖 + 𝑎𝑖+1/𝛾n
�̃�𝑖 +

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖 + 𝑎𝑖+1/𝛾n

∇𝜓*(𝑧𝑖 −
𝑎𝑖+1

𝛾n
∇𝑓(�̃�𝑖+1)).

Note that �̃�𝑖+1 is a convex combination of the other two points so it stays in 𝑄. Indeed, the

initial point is in 𝑄 and by (3.5.2) we have that ∇𝜓*(𝑧𝑗) ∈ 𝑄 for all 𝑗 ≥ 0. However this method

is implicit and possibly computationally expensive to implement. Nonetheless, two steps of a

fixed point iteration procedure of this equation will be enough to have discretization error that

is bounded by the term 𝐴𝑖𝜀𝑖: the last term of our bound. The error in the bound of 𝐸𝑖+1 that

the inner product incurs is compensated by the Bregman divergence term. In such a case, the

equations of this method become, for 𝑖 ≥ 0:⎧⎨⎩ �̃�𝑖 =
𝛾𝑖𝐴𝑖

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
�̃�𝑖 +

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n

∇𝜓*(𝑧𝑖); 𝜁𝑖 = 𝑧𝑖 −
𝑎𝑖+1

𝛾n
∇𝑓(�̃�𝑖)

�̃�𝑖+1 =
𝛾𝑖𝐴𝑖

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
�̃�𝑖 +

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n

∇𝜓*(𝜁𝑖); 𝑧𝑖+1 = 𝑧𝑖 −
𝑎𝑖+1

𝛾n
∇𝑓(�̃�𝑖+1)

(3.5.5)

We prove now that this indeed leads to an accelerated algorithm. After this, we will show that

we can perform a binary search at each iteration, to ensure that even if we do not know �̃�𝑖+1 a

priori, we can compute a 𝛾𝑖 ∈ [𝛾p, 1/𝛾n] satisfying assumption (3.5.4). This will only add a log

factor to the overall complexity.

Lemma 3.5.2. Consider the method given in (3.5.5), starting from an arbitrary point �̃�0 ∈ 𝑄
with 𝑧0 = ∇𝜓(�̃�0) and 𝐴0 = 0. Assume we can compute 𝛾𝑖 such that �̃�𝑖+1 satisfies (3.5.4). Then,

the error from Lemma 3.5.1 is bounded by

𝐸𝑖+1 ≤
𝑎𝑖+1

𝛾n
⟨∇𝑓(�̃�𝑖+1)−∇𝑓(�̃�𝑖),∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩ −𝐷𝜓*(𝜁𝑖, 𝑧𝑖+1)−𝐷𝜓*(𝑧𝑖, 𝜁𝑖) +𝐴𝑖𝜀𝑖.
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Proof Using Lemma 3.5.1 and the third line of (3.5.5) we have

𝐸𝑖+1 −𝐴𝑖𝜀𝑖 ≤
𝑎𝑖+1

𝛾n
⟨∇𝑓(�̃�𝑖+1),∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩ −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1)

≤
𝑎𝑖+1

𝛾n
⟨∇𝑓(�̃�𝑖+1)−∇𝑓(�̃�𝑖) +∇𝑓(�̃�𝑖),∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩ −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1)

By the definition of 𝜁𝑖 we have (𝑎𝑖+1/𝛾n)∇𝑓(�̃�𝑖) = 𝑧𝑖 − 𝜁𝑖. Using this fact and the triangle

equality of Bregman divergences Lemma 2.1.8.5, we obtain

𝑎𝑖+1

𝛾n
⟨∇𝑓(�̃�𝑖),∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩ = ⟨𝑧𝑖 − 𝜁𝑖,∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩

= 𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1)−𝐷𝜓*(𝜁𝑖, 𝑧𝑖+1)−𝐷𝜓*(𝑧𝑖, 𝜁𝑖).

The lemma follows after combining these two equations.

Theorem 3.5.3. Let 𝑄 be a closed convex set of diameter 𝐷. Let 𝑓 : 𝑄 → R be an �̃�-smooth

tilted-convex function with constants 𝛾n, 𝛾p. Assume there is a point �̃�* ∈ 𝑄 such that ∇𝑓(�̃�*) =
0. Let 𝜓 : 𝑄 → R be a 𝜎-strongly convex map. Let �̃�𝑖, 𝑧𝑖, �̃�𝑖, 𝜁𝑖 be updated according to (3.5.5),

for 𝑖 ≥ 0 starting from an arbitrary initial point �̃�0 ∈ 𝑄 with 𝑧0 = ∇𝜓(�̃�0) and 𝐴0 = 0, assuming

we can find 𝛾𝑖 at each iteration satisfying (3.5.4). If �̃�𝑎2𝑖+1/𝛾n𝜎 ≤ 𝑎𝑖+1 + 𝐴𝑖𝛾n𝛾p, then for all

𝑇 ≥ 1 we have

𝑓(�̃�𝑇 )− 𝑓(�̃�*) ≤
𝐷𝜓(�̃�

*, �̃�0)

𝐴𝑇
+

𝑇−1∑︁
𝑖=1

𝐴𝑖𝜀𝑖
𝐴𝑇

.

In particular, if 𝑎𝑖 =
𝑖
2
𝜎
�̃�
𝛾2n𝛾p, 𝜓(�̃�) =

𝜎
2 ‖�̃�‖

2, 𝜀𝑖 =
𝐴𝑇 𝜀

2(𝑇−1)𝐴𝑖
and 𝑇 =

⌈︂√︁
4�̃�‖�̃�0 − �̃�*‖2/(𝛾2n𝛾p𝜀)

⌉︂
=

𝑂(
√︁
�̃�/(𝛾2n𝛾p𝜀)) then 𝑓(�̃�𝑇 )− 𝑓(�̃�*) < 𝜀.

Proof We bound the right hand side of the discretization error given by Lemma 3.5.2. Define

𝑎 = ‖∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)‖ and 𝑏 = ‖∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖)‖. We have

𝐸𝑖+1 −𝐴𝑖𝜀𝑖
1
≤

𝑎𝑖+1

𝛾n
⟨∇𝑓(�̃�𝑖+1)−∇𝑓(�̃�𝑖),∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩ −𝐷𝜓*(𝜁𝑖, 𝑧𝑖+1)−𝐷𝜓*(𝑧𝑖, 𝜁𝑖)

2
≤

𝑎𝑖+1

𝛾n
�̃�‖�̃�𝑖+1 − �̃�𝑖‖ · 𝑎−𝐷𝜓*(𝜁𝑖, 𝑧𝑖+1)−𝐷𝜓*(𝑧𝑖, 𝜁𝑖)

3
≤

𝑎𝑖+1

𝛾n
�̃�‖�̃�𝑖+1 − �̃�𝑖‖ · 𝑎−

𝜎

2
(𝑎2 + 𝑏2)

4
≤

𝑎2𝑖+1/𝛾
2
n

𝐴𝑖𝛾𝑖 + 𝑎𝑖+1/𝛾n
�̃� · 𝑎𝑏− 𝜎

2
(𝑎2 + 𝑏2)

5
≤ 𝑎𝑏

(︂
𝑎2𝑖+1/𝛾

2
n

𝐴𝑖𝛾𝑖 + 𝑎𝑖+1/𝛾n
�̃�− 𝜎

)︂
.

Here 1 follows from Lemma 3.5.2, 2 uses the Cauchy-Schwartz inequality and gradient Lips-

chitzness, which is equivalent to smoothness for differentiable tilted convex functions, as we point

out in the proof of Lemma 3.2.3. In 3 , we used Lemma 2.1.8.2, and 4 uses the fact that by the

definition of the method (3.5.5) we have �̃�𝑖+1 − �̃�𝑖 =
𝑎𝑖+1/𝛾n

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
(∇𝜓*(𝜁𝑖) − ∇𝜓*(𝑧𝑖)). Finally

5 uses −(𝑎2 + 𝑏2) ≤ −2𝑎𝑏, which comes from (𝑎 − 𝑏)2 ≥ 0. By the previous inequality, if we

want 𝐸𝑖+1 ≤ 𝐴𝑖𝜀𝑖, it is enough to guarantee the right hand side of the last expression is ≤ 0
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which is implied by
�̃�

𝜎𝛾n
𝑎2𝑖+1 ≤ 𝑎𝑖+1 +𝐴𝑖𝛾n𝛾p, (3.5.6)

since 𝛾p ≤ 𝛾𝑖. And this is the assumption we made in the theorem. By inspection, if we use

the value in the second part of the statement of the theorem 𝑎𝑖 =
𝑖
2 ·

𝜎
�̃�
· 𝛾2n𝛾p into the previous

inequality and noting that 𝐴𝑖 =
𝑖(𝑖+1)

4 · 𝜎
�̃�
·𝛾2n𝛾p we prove that the previous inequality is satisfied:

�̃�

𝜎𝛾n
𝑎2𝑖+1 =

(𝑖+ 1)2

4
· 𝜎
�̃�
· 𝛾3n𝛾2p ≤

(︂
𝑖+ 1

2
+
𝑖(𝑖+ 1)

4

)︂
𝜎

�̃�
· 𝛾3n𝛾2p

≤ 𝑖+ 1

2

𝜎

�̃�
· 𝛾2n𝛾p +

𝑖(𝑖+ 1)

4

𝜎

�̃�
· 𝛾3n𝛾2p = 𝑎𝑖+1 +𝐴𝑖𝛾n𝛾p.

So this choice, and in particular any choice that satisfies (3.5.6), guarantees discretization error

𝐸𝑖+1 ≤ 𝐴𝑖𝜀𝑖. By the definition of 𝐺𝑖 and 𝐸𝑖 we have

𝑓(�̃�𝑇 )− 𝑓(�̃�*) ≤
𝐴1𝐺1

𝐴𝑇
+
𝑇−1∑︁
𝑖=1

𝐴𝑖𝜀𝑖
𝐴𝑇

So it only remains to bound the initial gap 𝐺1. In order to do this, we note that the initial

conditions and the method imply the following computation of the first points, from �̃�0 ∈ 𝑄,

which is an arbitrary initial point:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑧0 = ∇𝜓(�̃�0)

�̃�0 =
𝛾0𝐴0

𝐴0𝛾0+𝑎1/𝛾n
�̃�0 +

𝑎1/𝛾n
𝐴0𝛾0+𝑎1/𝛾n

∇𝜓*(𝑧0) = ∇𝜓*(∇𝜓(�̃�0)) = �̃�0

𝜁0 = 𝑧0 −
𝑎1
𝛾n
∇𝑓(�̃�0) = 𝑧0 −

𝑎1
𝛾n
∇𝑓(�̃�0)

�̃�1 =
𝛾0𝐴0

𝐴0𝛾0+𝑎1/𝛾n
�̃�0 +

𝑎1/𝛾n
𝐴0𝛾0+𝑎1/𝛾n

∇𝜓*(𝜁0) = ∇𝜓*(𝜁0)

(3.5.7)

We have used 𝐴0 = 0. Note this first iteration does not depend on 𝛾0. Also, by using this

discretization we start at �̃�0 so we modify the definition of the lower bound (3.5.1) so the

regularizer added measures the distance from �̃�0. This change of �̃�𝑡0 to �̃�0 = �̃�0 only changes

the initial gap. Thus, the first lower bound computed is

𝐿1 = 𝑓(�̃�1) +
1

𝛾n
⟨∇𝑓(�̃�1),∇𝜓*(𝑧1)− �̃�1⟩+

1

𝐴1

𝐷𝜓(∇𝜓*(𝑧1), �̃�0)−
1

𝐴1

𝐷𝜓(�̃�
*, �̃�0).

Using 𝑎1 = 𝐴1, �̃�1 = ∇𝜓*(𝜁0), (𝑎1/𝛾n)∇𝑓(�̃�0) = 𝑧0 − 𝜁0, and the triangle equality for Bregman

divergences Lemma 2.1.8.5 we obtain

1

𝛾n
⟨∇𝑓(�̃�0),∇𝜓*(𝑧1)− �̃�1⟩ =

1

𝐴1

⟨𝑧0 − 𝜁0,∇𝜓*(𝑧1)−∇𝜓*(𝜁0)⟩

=
1

𝐴1

(︁
𝐷𝜓*(𝑧0, 𝜁0)−𝐷𝜓*(𝑧0, 𝑧1) +𝐷𝜓*(𝜁0, 𝑧1)

)︁
.

(3.5.8)

On the other hand, by smoothness of 𝑓 and the initial condition we have

1

𝛾n
⟨∇𝑓(�̃�1)−∇𝑓(�̃�0),∇𝜓*(𝑧1)− �̃�1⟩ ≥ −

�̃�

𝛾n
‖∇𝜓*(𝜁0)− �̃�0‖‖∇𝜓*(𝑧1)− �̃�1‖. (3.5.9)
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We can now finally bound 𝐺1:

𝐺1

1
≤ �̃�

𝛾n
‖∇𝜓*(𝜁0)− �̃�0‖ · ‖∇𝜓*(𝑧1)− �̃�1‖+

−𝐷𝜓*(𝑧0, 𝜁0)−𝐷𝜓*(𝜁0, 𝑧1) +𝐷𝜓(�̃�
*, �̃�0)

𝐴1

2
≤ �̃�

𝛾n
‖∇𝜓*(𝜁0)− �̃�0‖ · ‖∇𝜓*(𝑧1)− �̃�1‖

− 𝜎

2𝐴1

(︁
‖∇𝜓*(𝜁0)− �̃�0‖2 + ‖∇𝜓*(𝑧1)− �̃�1‖2

)︁
+

1

𝐴1

𝐷𝜓(�̃�
*, �̃�0)

3
≤ ‖∇𝜓*(𝜁0)− �̃�0‖ · ‖∇𝜓*(𝑧1)− �̃�1‖

(︃
�̃�

𝛾n
− 𝜎

𝐴1

)︃
+

1

𝐴1

𝐷𝜓(�̃�
*, �̃�0)

4
≤ 1

𝐴1

𝐷𝜓(�̃�
*, �̃�0).

We used in 1 the definition of 𝐺1 = 𝑈1 − 𝐿1 = 𝑓(�̃�1)− 𝐿1 and we bound the inner product in

𝐿1 using −((3.5.8)+(3.5.9)). Also, since 𝑧0 = ∇𝜓(�̃�0) we have 𝐷𝜓*(𝑧0, 𝑧1) = 𝐷𝜓*(∇𝜓(�̃�0), 𝑧1) =

𝐷𝜓(∇𝜓*(𝑧1), �̃�0), so we can cancel two of the Bregman divergences. In 2 , we used Lemma 2.1.8.6

and Lemma 2.1.8.2, ∇𝜓*(𝑧0) = �̃�0 = �̃�0, and ∇𝜓*(𝜁0) = �̃�1. In 3 we used again the inequal-

ity −(𝑎2 + 𝑏2) ≤ −2𝑎𝑏. Finally 4 is deduced from 𝐴1 = 𝑎1 ≤ 𝜎𝛾n/�̃� which comes from the

assumption �̃�𝑎2𝑖+1/𝛾n𝜎 ≤ 𝑎𝑖+1 +𝐴𝑖𝛾n𝛾p for 𝑖 = 0.

The first part of the theorem follows. The second one is a straightforward application of

the first one as we see below. Indeed, taking into account 𝐴𝑇 =
𝑇 (𝑇+1)𝜎𝛾2n𝛾p

4�̃�
, and the choice

of 𝑇 =

⌈︂√︁
4�̃�‖�̃�0 − �̃�*‖2/(𝛾2n𝛾p𝜀)

⌉︂
, 𝜓(�̃�) = 𝜎

2 ‖�̃�‖
2, and 𝜀𝑖 =

𝐴𝑇 𝜀

2(𝑇−1)𝐴𝑖
we derive the second

statement.

𝑓(�̃�𝑇 )− 𝑓(�̃�*) ≤
𝐴1𝐺1

𝐴𝑇
+

𝑇−1∑︁
𝑖=1

𝐴𝑖𝜀𝑖
𝐴𝑇
≤

𝜎
2 ‖�̃�0 − �̃�

*‖2

𝐴𝑇
+
𝜀

2
<

2�̃�‖�̃�0 − �̃�*‖2

𝛾2n𝛾p𝑇
2

+
𝜀

2
≤ 𝜀.

We present now the final lemma, that proves that 𝛾𝑖 can be found efficiently. As we advanced

in the sketch of the proof, we use a binary search. The idea behind it is that due to tilted-

convexity (3.2.3) we satisfy the equation for 𝛾𝑖 = 1
𝛾n

or 𝛾𝑖 = 𝛾p, or there is 𝛾𝑖 ∈ (𝛾p, 1/𝛾n)

such that ⟨∇𝑓(�̃�𝑖+1), �̃�𝑖+1 − �̃�𝑖⟩ = 0. The existence of �̃�* that satisfies ∇𝑓(�̃�*) = 0 along with

the boundedness of 𝑄 and smoothness, imply the Lipschitzness of 𝑓 . Both Lipschitzness and

smoothness allow to prove that a binary search finds efficiently a suitable point.

Lemma 3.5.4. Let 𝑄 ⊆ R𝑛 be a convex set of diameter 2�̃�. Let 𝑓 : 𝑄 → R be a function that

satisfies tilted-convexity (3.2.3), is �̃� smooth and such that there is �̃�* ∈ 𝑄 such that ∇𝑓(�̃�*) = 0.

Let the strongly convex parameter of 𝜓(·) be 𝜎 = 𝑂(1). Let 𝑖 ≥ 1 be an index. Given two points

�̃�𝑖, 𝑧𝑖 ∈ 𝑄 and the method in (3.2.6) using the learning rates 𝑎𝑖 = 𝑖
2 ·

𝜎
�̃�
· 𝛾2n𝛾p prescribed in

Theorem 3.5.3, we can compute 𝛾𝑖 satisfying (3.5.4), i.e.,

𝑓(�̃�𝑖+1)− 𝑓(�̃�𝑖) ≤ 𝛾𝑖⟨∇𝑓(�̃�𝑖+1), �̃�𝑖+1 − �̃�𝑖⟩+ 𝜀𝑖. (3.5.10)

And the computation of 𝛾𝑖 requires no more than 𝑂
(︁
log
(︁
�̃��̃�
𝛾n𝜀𝑖
· 𝑖
)︁)︁

queries to the gradient oracle.
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Proof Let Γ̂𝑖(𝜆) : [
𝑎𝑖+1

𝐴𝑖+1
,

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾p+𝑎𝑖+1/𝛾n

]→ R be defined as

Γ̂𝑖

(︂
𝑎𝑖+1/𝛾n

𝐴𝑖~x+ 𝑎𝑖+1/𝛾n

)︂
= ~x, for ~x ∈ [𝛾p,

1

𝛾n
]. (3.5.11)

By monotonicity, it is well defined. Let �̃�𝜆𝑖+1 be the point computed by one iteration of (3.2.6)

using the parameter 𝛾𝑖 = Γ̂𝑖(𝜆). Likewise, we define the rest of the points in iteration (3.2.6)

depending on 𝜆. We first try 𝛾𝑖 = 1/𝛾n and 𝛾𝑖 = 𝛾p and use any of them if they satisfy the

conditions. If neither of them do, it means that for the first choice we had ⟨∇𝑓(�̃�𝜆1𝑖+1), �̃�
𝜆1
𝑖+1−�̃�𝑖⟩ <

0 and for the second one, it is ⟨∇𝑓(�̃�𝜆2𝑖+1), �̃�
𝜆2
𝑖+1 − �̃�𝑖⟩ > 0, for 𝜆1 = Γ̂−1

𝑖 (1/𝛾n) and 𝜆2 = Γ̂−1
𝑖 (𝛾p).

Therefore, by continuity, there is 𝜆* ∈ [𝜆1, 𝜆2] such that ⟨∇𝑓(�̃�𝜆*𝑖+1), �̃�
𝜆*
𝑖+1−�̃�𝑖⟩ = 0. The continuity

condition is easy to prove. We omit it because it is derived from the Lipschitzness condition that

we will prove below. Such a point satisfies (3.5.4) for 𝜀𝑖 = 0. We will prove that the function

𝒢𝑖 : [
𝑎𝑖+1

𝐴𝑖+1
,

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾p+𝑎𝑖+1/𝛾n

]→ R, defined as

𝒢𝑖(𝜆)
def
= −Γ̂𝑖(𝜆)⟨∇𝑓(�̃�𝜆𝑖+1), �̃�

𝜆
𝑖+1 − �̃�𝑖⟩+ (𝑓(�̃�𝜆𝑖+1)− 𝑓(�̃�𝑖)), (3.5.12)

is Lipschitz so we can guarantee that (3.5.4) holds for a large enough interval around 𝜆*. Finally,

we will be able to perform a binary search to efficiently find a point in such interval or another

interval around another point that satisfies that the inner product is 0.

So

|𝒢𝑖(𝜆)− 𝒢𝑖(𝜆′)| ≤ |𝑓(�̃�𝜆𝑖+1)− 𝑓(�̃�𝜆
′
𝑖+1)|

+ |Γ̂𝑖(𝜆′)| · |⟨∇𝑓(�̃�𝜆
′
𝑖+1), �̃�

𝜆′
𝑖+1 − �̃�𝑖⟩ − ⟨∇𝑓(�̃�𝜆𝑖+1), �̃�

𝜆
𝑖+1 − �̃�𝑖⟩|

+ |⟨∇𝑓(�̃�𝜆𝑖+1), �̃�
𝜆
𝑖+1 − �̃�𝑖⟩| · |Γ̂𝑖(𝜆′)− Γ̂𝑖(𝜆)|

(3.5.13)

We have used the triangular inequality and the inequality

|𝛼1𝛽1 − 𝛼2𝛽2| ≤ |𝛼1||𝛽1 − 𝛽2|+ |𝛽2||𝛼1 − 𝛼2|, (3.5.14)

which is a direct consequence of the triangular inequality, after adding and subtracting 𝛼1𝛽2 in

the | · | on the left hand side. We bound each of the three summands of the previous inequality

separately, but first we bound the following which will be useful for our other bounds,

‖�̃�𝜆′𝑖+1 − �̃�𝜆𝑖+1‖
1
= ‖(𝜆′∇𝜓*(𝜁𝜆

′
𝑖 ) + (1− 𝜆′)�̃�𝑖)− (𝜆∇𝜓*(𝜁𝜆𝑖 ) + (1− 𝜆)�̃�𝑖)‖

2
≤ ‖∇𝜓*(𝜁𝜆𝑖 )− �̃�𝑖‖|𝜆′ − 𝜆|+ ‖𝜆′∇𝜓*(𝜁𝜆

′
𝑖 )− 𝜆′∇𝜓*(𝜁𝜆𝑖 )‖

3
≤ 2�̃�|𝜆− 𝜆′|+ ‖∇𝜓*(𝜁𝜆

′
𝑖 )−∇𝜓*(𝜁𝜆𝑖 )‖

4
≤ 2�̃�|𝜆− 𝜆′|+ 𝑎𝑖+1

𝛾n𝜎
‖∇𝑓(�̃�𝜆𝑖 )−∇𝑓(�̃�𝜆

′
𝑖 )‖

5
≤ 2�̃�|𝜆− 𝜆′|+ 𝑎𝑖+1�̃�

𝛾n𝜎
‖�̃�𝜆𝑖 − �̃�𝜆

′
𝑖 ‖

6
≤

(︃
2�̃�+

2𝑎𝑖+1�̃��̃�

𝛾n𝜎

)︃
|𝜆− 𝜆′| (3.5.15)

Here, 1 uses the definition of �̃�𝜆𝑖+1 as a convex combination of �̃�𝑖 and ∇𝜓*(𝜁𝜆𝑖 ). 2 adds and

substracts 𝜆′∇𝜓*(𝜁𝜆𝑖 ), groups terms and uses the triangular inequality. In 3 we use the fact
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that the diameter of 𝑄 is 2�̃� and bound 𝜆′ ≤ 1, and |𝜆| ≤ 1. 4 uses the 1
𝜎 Lipschitzness of

∇𝜓*(·), which is a consequence of the 𝜎-strong convexity of 𝜓(·). 5 uses the smoothness of 𝑓 .

In 6 , from the definition of �̃�𝜆𝑖 we have that ‖�̃�𝜆𝑖 − �̃�𝜆
′
𝑖 ‖ ≤ ‖�̃�𝑖 − 𝑧𝑖‖|𝜆 − 𝜆′|. We bounded this

further using the diameter of 𝑄.

Note that 𝑓 is Lipschitz over 𝑄. By the existence of �̃�*, �̃�-smoothness, and the diameter of

𝑄 we have ‖∇𝑓(�̃�)‖ = ‖∇𝑓(�̃�)−∇𝑓(�̃�*)‖ ≤ �̃�‖�̃�− �̃�*‖ ≤ 2𝑅�̃�. So the Lipschitz constant 𝐿p of

𝑓 is 𝐿p ≤ 2𝑅�̃�. Now we can proceed and bound the three summands of (3.5.13). The first one

reduces to the inequality above after using Lipschitzness of 𝑓(·):

|𝑓(�̃�𝜆𝑖+1)− 𝑓(�̃�𝜆
′
𝑖+1)| ≤ 𝐿p‖�̃�𝜆

′
𝑖+1 − �̃�𝜆𝑖+1‖. (3.5.16)

We prove Lipschitzness of Γ̂𝑖. Note that

|(Γ̂−1
𝑖 )′(~x)| =

⃒⃒⃒⃒
𝐴𝑖𝑎𝑖+1/𝛾n

(𝐴𝑖~x+ 𝑎𝑖+1/𝛾n)
2

⃒⃒⃒⃒
≥
𝛾n𝐴𝑖𝑎𝑖+1

𝐴2
𝑖+1

, (3.5.17)

so Γ̂′
𝑖(𝜆) is bounded by 𝐴2

𝑖+1/(𝛾n𝐴𝑖𝑎𝑖+1) for any 𝜆. In order to bound the second summand,

we use ~x ∈ [𝛾p, 1/𝛾n] and obtain |Γ̂𝑖(𝜆)| ≤ 1
𝛾n

. For the second factor, we add and subtract

⟨∇𝑓(�̃�𝜆𝑖+1), �̃�
𝜆′
𝑖+1 − �̃�𝑖⟩ and use the triangular inequality and then Cauchy-Schwartz. Thus, we

obtain

|⟨∇𝑓(�̃�𝜆′𝑖+1), �̃�
𝜆′
𝑖+1 − �̃�𝑖⟩ − ⟨∇𝑓(�̃�𝜆𝑖+1), �̃�

𝜆
𝑖+1 − �̃�𝑖⟩|

≤ ‖∇𝑓(�̃�𝜆𝑖+1)‖ · ‖�̃�𝜆
′
𝑖+1 − �̃�𝜆𝑖+1‖+ ‖∇𝑓(�̃�𝜆

′
𝑖+1)−∇𝑓(�̃�𝜆𝑖+1)‖ · ‖�̃�𝜆

′
𝑖+1 − �̃�𝑖‖

1
≤ (𝐿p + 2�̃��̃�)‖�̃�𝜆′𝑖+1 − �̃�𝜆𝑖+1‖.

(3.5.18)

In 1 , we used Lipschitzness to bound the first factor. We also used the diameter of 𝑄 to bound

the last factor and the smoothness of 𝑓(·) to bound the first factor of the second summand.

For the third summand, we will bound the first factor using Cauchy-Schwartz, Lipschitzness

of 𝑓(·) and the diameter of 𝑄. We just proved in (3.5.17) that Γ̂𝑖 is Lipschitz, so use this property

for the second factor. The result is the following

|⟨∇𝑓(�̃�𝜆𝑖+1), �̃�
𝜆
𝑖+1 − �̃�𝑖⟩| · |Γ̂𝑖(𝜆′)− Γ̂𝑖(𝜆)| ≤ 2𝐿p�̃�

𝐴2
𝑖+1

𝛾n𝐴𝑖𝑎𝑖+1

|𝜆′ − 𝜆|. (3.5.19)

Applying the bounds of the three summands (3.5.16), (3.5.17), (3.5.18), (3.5.19) into (3.5.13)

we obtain the inequality |𝒢𝑖(𝜆′)− 𝒢𝑖(𝜆)| ≤ �̂�|𝜆′ − 𝜆| for

�̂� =

(︃
2�̃�+

2𝑎𝑖+1�̃��̃�

𝛾n𝜎

)︃(︂
𝐿p + (𝐿p + 2�̃��̃�)

1

𝛾n

)︂
+ 2𝐿p�̃�

𝐴2
𝑖+1

𝛾n𝐴𝑖𝑎𝑖+1

.

We will use the following to bound �̂�. If we use the learning rates prescribed in Theorem 3.5.3,

namely 𝑎𝑖 =
𝑖𝜎𝛾2n𝛾p
2𝐿 and thus 𝐴𝑖 =

𝑖(𝑖+1)𝜎𝛾2n𝛾p
4𝐿 we can bound 𝐴2

𝑖+1/(𝐴𝑖𝑎𝑖+1) ≤ 4(𝑖+2), using that

𝑖 ≥ 1. We recall we computed 𝐿p ≤ 2�̃��̃� and that we assumed 𝜎 = 𝑂(1). In Algorithm 5 we use

𝜎 = 1.
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On the other hand the initial length of the search interval, which is the domain of definition

of 𝒢𝑖 is at most 1 since the interval is in (0, 1). Recall we are denoting by 𝜆* a value such that

⟨∇𝑓(�̃�𝜆*𝑖+1), �̃�
𝜆*
𝑖+1 − �̃�𝑖⟩ = 0 so 𝒢𝑖(𝜆*) ≤ 0. Lipschitzness of 𝐺 implies that if 𝒢𝑖(𝜆*) ≤ 0 then

𝒢𝑖(𝜆) ≤ 𝜀𝑖 for

𝜆 ∈ [𝜆* − 𝜀𝑖

�̂�
, 𝜆* +

𝜀𝑖

�̂�
] ∩ [Γ̂−1

𝑖 (1/𝛾n), Γ̂
−1
𝑖 (𝛾p)].

If the extremal points, Γ̂−1
𝑖 (1/𝛾n), Γ̂

−1
𝑖 (𝛾p) did not satisfy (3.5.10), then this interval is of length

2𝜀𝑖
�̂�

and a point in such interval or another interval that is around another point �̄�* that satisfies

⟨∇𝑓(�̃��̄�*𝑖+1), �̃�
�̄�*
𝑖+1 − �̃�𝑖⟩ = 0 can be found with a binary search in at most

𝑂

(︃
log

(︃
�̂�

𝜀𝑖

)︃)︃
1
= 𝑂

(︃
log

(︃
�̃��̃�

𝛾n𝜀𝑖
· 𝑖

)︃)︃

iterations, provided that at each step we can ensure we halve the size of the search interval. The

bounds of the previous paragraph are applied in 1 .The binary search can be done easily: we

start with [Γ̂−1
𝑖 (1/𝛾n), Γ̂

−1
𝑖 (𝛾p)] and assume the extremes do not satisfy (3.5.10), so the sign of

⟨∇𝑓(�̃�𝜆𝑖+1), �̃�
𝜆
𝑖+1 − �̃�𝑖⟩ is different for each extreme. Each iteration of the binary search queries

the midpoint of the current working interval and if (3.5.10) is not satisfied, we keep the half of

the interval such that the extremes keep having the sign of ⟨∇𝑓(�̃�𝜆𝑖+1), �̃�
𝜆
𝑖+1 − �̃�𝑖⟩ different from

each other, ensuring that there is a point in which this expression evaluates to 0 and thus keeping

the invariant. We include the pseudocode of this binary search in Algorithm 6.

We proceed to prove Theorem 3.2.4, which is an immediate consequence of the previous

results.

Proof of Theorem 3.2.4. The proof follows from Theorem 3.5.3, provided that we can find

𝛾𝑖 satisfying (3.5.4). Lemma 3.5.4 shows that this is possible after performing a logarithmic

number of queries to the gradient oracle. Note that given our choice of 𝜀𝑖, 𝑇 and 𝑎𝑖, the number

of queries to the gradient oracle Lemma 3.5.4 requires is no more than 𝑂(log(�̃�𝑅/𝛾n𝜀)) for any

𝑖 ≤ 𝑇 . So we find an 𝜀-minimizer of 𝑓 after ̃︀𝑂(
√︁
�̃�/(𝛾2n𝛾p𝜀)) queries to the gradient oracle.

Proof of Theorem 3.2.5. Given the function to optimize 𝐹 :ℳ𝐾 → R and the geodesic map

ℎ, we define 𝑓 = 𝐹 ∘ ℎ−1. Using Lemma 3.2.3 we know that 𝑓 is �̃�-smooth, with �̃� = 𝑂(𝐿).

Lemma 3.2.2 proves that 𝑓 satisfies tilted-convexity (3.2.3) for constants 𝛾n and 𝛾p depending

on 𝑅. So Theorem 3.2.4 applies and the total number of queries to the oracle needed to obtain

an 𝜀-minimizer of 𝑓 is ̃︀𝑂(
√︁
�̃�/𝛾2n𝛾p𝜀) = ̃︀𝑂(

√︀
𝐿/𝜀). The result follows, since 𝑓(�̃�𝑇 ) − 𝑓(�̃�*) =

𝐹 (𝑥𝑇 )− 𝐹 (𝑥*).

We recall a few concepts that were assumed during Section 3.2 to better interpret Theo-

rem 3.2.5. We work in the hyperbolic space, or in an open hemisphere. The aim is to minimize

a smooth and g-convex function defined on any of these manifolds, or a submanifold of them.

The existence of a point 𝑥* that satisfies ∇𝐹 (𝑥*) = 0 is assumed. Starting from an arbitrary

point 𝑥0, we let 𝑅 be a bound of the distance between 𝑥0 and 𝑥*, that is, 𝑅 ≥ 𝑑(𝑥0, 𝑥
*). We
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Algorithm 6 BinaryLineSearch(�̃�𝑖, 𝑧𝑖, 𝑓 ,𝒳 , 𝑎𝑖+1, 𝐴𝑖, 𝜀, �̃�, 𝛾n, 𝛾p)

Input: Points �̃�𝑖, 𝑧𝑖, function 𝑓 , domain 𝒳 , learning rate 𝑎𝑖+1, accumulated learning rate 𝐴𝑖,
final target accuracy 𝜀, final number of iterations 𝑇 , smoothness constant �̃�, constants 𝛾n, 𝛾p.
Define 𝜀𝑖 ← (𝐴𝑇 𝜀)/(2(𝑇 − 1)𝐴𝑖) as in Theorem 3.5.3, i.e. with 𝐴𝑇 = 𝑇 (𝑇 + 1)𝛾2n𝛾p/4�̃�. Γ̂𝑖
defined as in (3.5.11) and 𝒢𝑖 defined as in (3.5.12) i.e.

𝒢𝑖(𝜆)
def
= −Γ̂𝑖(𝜆)⟨∇𝑓(�̃�𝜆𝑖+1), �̃�

𝜆
𝑖+1 − �̃�𝑖⟩+ (𝑓(�̃�𝜆𝑖+1)− 𝑓(�̃�𝑖)),

for 𝑥𝜆𝑖+1 being the result of method (3.5.5) when 𝛾𝑖 = Γ̂𝑖(𝜆).

Output: 𝜆 =
𝑎𝑖+1/𝛾n

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
for 𝛾𝑖 such that 𝒢𝑖(Γ̂−1

𝑖 (𝛾𝑖)) ≤ 𝜀𝑖.

1: if 𝒢𝑖(Γ̂−1
𝑖 (1/𝛾n)) ≤ 𝜀𝑖 then 𝜆 = Γ̂−1

𝑖 (1/𝛾n)

2: else if 𝒢𝑖(Γ̂−1
𝑖 (𝛾p)) ≤ 𝜀𝑖 then 𝜆 = Γ̂−1

𝑖 (𝛾p)
3: else
4: left← Γ̂−1

𝑖 (1/𝛾n)

5: right← Γ̂−1
𝑖 (𝛾p)

6: 𝜆← (left+ right)/2
7: while 𝒢𝑖(𝜆) > 𝜀𝑖 do
8: if ⟨∇𝑓(�̃�𝜆𝑖+1), �̃�

𝜆
𝑖+1 − �̃�𝑖⟩ < 0 then right← 𝜆

9: else left← 𝜆
10: end if
11: 𝜆← (left+ right)/2
12: end while
13: end if
14: return 𝜆

perform optimization over ℬ𝑅 = Exp𝑥0(�̄�(0, 𝑅)). Note 𝑥* ∈ ℬ𝑅. We assume 𝐹 : ℳ𝐾 → R

is a differentiable function, ℬ𝑅 ⊂ ℳ𝐾 , and ℳ𝐾 has constant sectional curvature 𝐾. If 𝐾 is

positive, we restrict 𝑅 < 𝜋/2
√
𝐾 so ℬ𝑅 is contained in an open hemisphere and it is uniquely

geodesic. We define a geodesic map ℎ : ℳ𝐾 → 𝑀 , where 𝑀 ⊂ R𝑛 and define the function

𝑓 : ℎ(ℳ𝐾) → R as 𝑓 = 𝐹 ∘ ℎ−1. We perform constrained optimization over this function 𝑓 in

𝒳 = ℎ(ℬ𝑅) in an accelerated way, up to constants and log factors, where the constants appear

as an effect of the deformation of the geometry and depend on 𝑅 and 𝐾 only.

We note that the assumption of the existence of 𝑥* such that ∇𝐹 (𝑥*) = 0 was assumed for

simplicity only and it is not necessary, since �̂�* = argmin𝑥∈ℬ𝑅{𝐹 (𝑥)} always satisfies the first

inequality in tilted-convexity (3.2.3)—the same proof used for 𝑥* works— so the lower bounds

𝐿𝑖 can be defined in the same way as we did. In that case, if we wanted to optimize with a ball

constraint, then we would use the Lipschitz constant of 𝐹 when restricted to 𝐵𝑅, which in the

case ∇𝐹 (�̂�*) = 0 we have that it is 𝑂(𝐿). The Lipschitz constant would be used for the analysis

of the binary search and for the computation of �̃�, that is the smoothness constant of 𝑓 .

3.6 Geometric results: Proofs of Lemmas 3.2.1, 3.2.2 and 3.2.3

In this section we prove the lemmas that take into account the deformations of the geom-

etry and the geodesic map ℎ to obtain relationships between 𝐹 and 𝑓 . Namely Lemma 3.2.1,
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Lemma 3.2.2 and Lemma 3.2.3. First, we recall the characterizations of the geodesic map and

some consequences. Then in Section 3.6.2, Section 3.6.3 and Section 3.6.4, we prove the results

related to distances angles and gradient deformations, respectively. That is, each of the three

parts of Lemma 3.2.1. In Section 3.6.4 we also prove Lemma 3.2.3, which comes naturally after

the proof of Lemma 3.2.1.c). In Section 3.6.5 we prove Lemma 3.2.2 and finish with a proof on

lower bounds for the condition number of strongly g-convex functions and an intuitive comment

on its implications.

Before this, we note that we can assume without loss of generality that the curvature of our

manifolds of interest can be taken to be 𝐾 ∈ {1,−1}. One can see that the final rates depend

on 𝐾 through 𝑅, 𝐿 and 𝜇.

Remark 3.6.1. For a function 𝐹 : ℳ𝐾 → R where ℳ𝐾 is a manifold of constant sectional

curvature 𝐾 ̸∈ {1,−1, 0}, we can apply a rescaling to the Gnomonic or Beltrami-Klein projection

to define a function on a manifold of constant sectional curvature 𝐾 ∈ {1,−1}. Namely, we can

map ℳ𝐾 to 𝑀 via the geodesic map ℎ :ℳ𝐾 →𝑀 , then we can rescale 𝑀 by multiplying each

vector in 𝑀 by the factor
√︀
|𝐾| and then we can apply the inverse geodesic map for the manifold

of curvature 𝐾 ∈ {1,−1}. If 𝑅 is the original bound of the initial distance to an optimum,

and 𝐹 is 𝐿-smooth and 𝜇-strongly g-convex (possibly with 𝜇 = 0) then the initial distance bound

becomes
√︀
|𝐾|𝑅 and the induced function becomes 𝐿/|𝐾|-smooth and 𝜇/|𝐾|-strongly g-convex.

This is a consequence of the transformation rescaling distances by a factor of
√︀
|𝐾|, i.e. if

𝑟 : ℳ𝐾 → ℳ𝐾/|𝐾| is the rescaling function, then 𝑑𝐾(𝑥, 𝑦)
√︀
|𝐾| = 𝑑𝐾/|𝐾|(𝑟(𝑥), 𝑟(𝑦)), where

𝑑𝑐(·, ·) denotes the distance on the manifold of constant sectional curvature 𝑐.

3.6.1 Preliminaries

We recall our characterization of the geodesic map. Given two points �̃�, 𝑦 ∈ 𝒳 , we have that

𝑑(𝑥, 𝑦), the distance between 𝑥 and 𝑦 with the metric ofℳ𝐾 , satisfies

C𝐾(𝑑(𝑥, 𝑦)) =
1 +𝐾⟨�̃�, 𝑦⟩√︀

1 +𝐾‖�̃�‖2 ·
√︀

1 +𝐾‖𝑦‖2
. (3.6.1)

And since the expression is symmetric with respect to rotations, 𝒳 = ℎ(ℬ𝑅) is a closed ball of

radius �̃�, with C𝐾(𝑅) = (1 +𝐾�̃�2)−1/2. Equivalently,

�̃� = tan(𝑅) if 𝐾 = 1; and �̃� = tanh(𝑅) if 𝐾 = −1. (3.6.2)

Similarly, we can write the distances as

𝑑(𝑥, 𝑦) = arccos

(︃
1 + ⟨�̃�, 𝑦⟩√︀

1 + ‖�̃�2‖
√︀
1 + ‖𝑦2‖

)︃
if 𝐾 = 1,

𝑑(𝑥, 𝑦) = arccosh

(︃
1− ⟨�̃�, 𝑦⟩√︀

1− ‖�̃�2‖
√︀
1− ‖𝑦2‖

)︃
if 𝐾 = −1,

(3.6.3)
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Alternatively, we have the following expression for the distance 𝑑(𝑥, 𝑦) when 𝐾 = −1. Let �̃�, �̃�

be the two points of intersection of the ball 𝐵(0, 1) ⊇𝑀 with the line joining �̃�, 𝑦, so the order

of the points in the line is �̃�, �̃�, 𝑦, �̃�. Then

𝑑(𝑥, 𝑦) =
1

2
log

(︃
‖�̃�− 𝑦‖‖�̃�− �̃�‖
‖�̃�− �̃�‖‖�̃�− 𝑦‖

)︃
if 𝐾 = −1. (3.6.4)

We will use this expression when working with the hyperbolic space. A simple elementary proof

of the equivalence of the expressions in (3.6.3) and (3.6.4) when 𝐾 = −1 is the following. We

can assume without loss of generality that we work with the hyperbolic plane, i.e. 𝑛 = 2. By

rotational symmetry, we can also assume that �̃� = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2), for 𝑥1 = 𝑦1. In fact,

it is enough to prove it in the case 𝑥2 = 0 because we can split a general segment into two, each

with one endpoint at (𝑥1, 0), and then add their lengths up. So according to (3.6.3) and (3.6.4),

respectively, we have

1

cosh2(𝑑(𝑥, 𝑦))
=

(1− 𝑥21)(1− 𝑦21 − 𝑦22)
(1− 𝑥21)2

=
(1− 𝑥21 − 𝑦22)

1− 𝑥21
,

𝑑(𝑥, 𝑦) =
1

2
log

(︃
(
√︀

1− 𝑦21 + 𝑦2)(
√︀
1− 𝑥21)

(
√︀

1− 𝑥21)(
√︀

1− 𝑦21 − 𝑦2)

)︃
=

1

2
log

(︃
1 + 𝑦2/

√︀
1− 𝑥21

1− 𝑦2/
√︀

1− 𝑥21

)︃

= arctanh

(︃
𝑦2√︀
1− 𝑥21

)︃
.

where we have used the equality arctanh(𝑡) = 1
2 log(

1+𝑡
1−𝑡). Now, using the trigonometric identity

1
cosh2(𝑡)

= 1− tanh2(𝑡), for 𝑡 = 𝑑(𝑥, 𝑦), we obtain that the two expressions above are equal. See

Theorem 7.4 in (Greenberg, 1993) (p. 268) for more details about the distance formula under

this geodesic map.

The spherical case is of a remarkable simplicity. If we have an (𝑛)-sphere of radius 1 centered

at 0𝑛+1, we can see the transformation of the geodesic map as the projection onto the plane

𝑥𝑛+1 = 1. Given two points x = (�̃�, 1), y = (𝑦, 1) then the angle between these two vectors is

the distance of the projected points on the sphere so we have cos(𝑑(𝑥, 𝑦)) = ⟨x,y⟩/‖x‖‖y‖ which

is equivalent to the corresponding formula in (3.6.3).

3.6.2 Distance deformation

Lemma 3.6.2. Let 𝑥, 𝑦 ∈ ℬ𝑅 = Exp𝑥0(�̄�(0, 𝑅)) ⊆ ℳ𝐾 be two different points, where ℳ𝐾 is

the hyperbolic space with constant sectional curvature 𝐾 = −1. Then, we have

1 ≤ 𝑑(𝑥, 𝑦)

‖�̃�− 𝑦‖
≤ cosh2(𝑅).

Proof We can assume without loss of generality that the dimension is 𝑛 = 2. As in (3.6.2),

let �̃� = tanh(𝑅), so any point �̃� ∈ 𝒳 satisfies ‖�̃�‖ ≤ �̃�, or equivalently 𝑑(𝑥, 𝑥0) ≤ 𝑅. Recall

�̃�0 = ℎ(𝑥0) = 0. Without loss of generality, we parametrize an arbitrary segment of length ℓ in
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𝒳 by two endpoints �̃�, 𝑦 with coordinates �̃� = (𝑥1, 𝑥2) and 𝑦 = (𝑥1 − ℓ, 𝑥2), for 0 ≤ 𝑥2 ≤ �̃�,

0 ≤ 𝑥1 ≤
√︁
�̃�2 − 𝑥22 and 0 < ℓ ≤ 𝑥1 +

√︁
�̃�2 − 𝑥22. Let d(𝑥1, 𝑥2, ℓ)

def
= 𝑑(𝑥,𝑦)

ℓ , the quantity we aim

to bound. We will prove the upper bound on d(𝑥1, 𝑥2, ℓ) in three steps.

1. If 𝑥1 = ℓ then d(·) is larger the larger 𝑥1 is. This allows to prove that it is enough to

consider points with the extra constraint ℓ ≤ 𝑥1.

2. The partial derivative of d(·) with respect to 𝑥1, whenever ℓ ≤ 𝑥1, is non-negative. So we

can just look at the points for which 𝑥1 =
√︁
�̃�2 − 𝑥22.

3. With the constraints above, d(·) is larger the smaller ℓ is. So we have

d(𝑥1, 𝑥2, ℓ) ≤ lim
ℓ→0

d(

√︁
�̃�2 − 𝑥22, 𝑥2, ℓ) =

√︁
1− 𝑥22/(1− �̃�

2).

This expression is maximized at 𝑥2 = 0 and evaluates to 1/(1− tanh2(𝑅)) = cosh2(𝑅).

We proceed now to prove the steps above. For the first step, we note

d(𝑥1, 𝑥2, 𝑥1) =
1

2𝑥1
log

(︃√︀
1− 𝑥22(

√︀
1− 𝑥22 + 𝑥1)√︀

1− 𝑥22(
√︀
1− 𝑥22 − 𝑥1)

)︃
=

1

2𝑥1
log

(︃
1 +

2𝑥1√︀
1− 𝑥22 − 𝑥1

)︃
.

We prove that the inverse of this expression is not increasing with respect to 𝑥1. By taking a

partial derivative:

𝜕(1/d(𝑥1, 𝑥2, 𝑥1))

𝜕𝑥1
= 2

−2𝑥1
√

1−𝑥22
1−𝑥22−𝑥21

+ log(1 + 2𝑥1/(
√︀
1− 𝑥22 − 𝑥1))

log(1 + 2𝑥1/(
√︀

1− 𝑥22 − 𝑥1))2
?
≤ 0

⇐⇒ 2𝑥1
√︀

1− 𝑥22
1− 𝑥22 − 𝑥21

− log(1 + (2𝑥1

√︁
1− 𝑥22 + 2𝑥21)/(1− 𝑥22 − 𝑥21))

?
≥ 0.

In order to see that the last inequality is true, note that the expression on the left hand side is

0 when 𝑥1 = 𝑥2 = 0. And the partial derivatives of this with respect to 𝑥1 and 𝑥2, respectively,

are:
4
√︀

1− 𝑥22𝑥21
(1− 𝑥22 − 𝑥21)2

and
4𝑥2𝑥

3
1√︀

1− 𝑥22(1− 𝑥22 − 𝑥21)2
.

Both are greater than 0 in the interior of the domain 0 ≤ 𝑥2 ≤ �̃�, 0 ≤ 𝑥1 ≤
√︁
�̃�2 − 𝑥22 and

at least 0 in the border. Now we use this monotonicity to prove that we can consider ℓ ≤ 𝑥1

only. Suppose ℓ > 𝑥1. The segment ℓ is divided into two parts by the 𝑒2 axis and we can assume

without loss of generality that the negative part is no greater than the other, i.e. 𝑥1 ≥ ℓ − 𝑥1.
Otherwise, we can perform the computations after a symmetry over the 𝑒2 axis. Let 𝑟 be the

point (0, 𝑥2). We want to see that the segment from �̃� to 𝑟 gives a greater value of d(·):

𝑑(𝑥, 𝑟)

𝑥1
≥ 𝑑(𝑥, 𝑦)

ℓ
⇐⇒ 𝑑(𝑥, 𝑟)(𝑥1 + (ℓ− 𝑥1)) ≥ 𝑥1(𝑑(𝑥, 𝑟) + 𝑑(𝑟, 𝑦))

⇐⇒ 𝑑(𝑥, 𝑟)/𝑥1 ≥ 𝑑(𝑟, 𝑦)/(ℓ− 𝑥1),

and the last inequality holds true by the monotonicity we just proved.
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In order to prove the second step, we take the partial derivative of d(𝑥1, 𝑥2, ℓ) with respect

to 𝑥1. We have

d(𝑥1, 𝑥2, ℓ) =
1

2ℓ
log

(︃
1 + ℓ/(

√︀
1− 𝑥22 − 𝑥1)

1− ℓ/
√︀
1− 𝑥22 + 𝑥1

)︃
,

𝜕d(𝑥1, 𝑥2, ℓ)

𝜕𝑥1
=

√
1− 𝑑2(2𝑥1 − ℓ)

2(1− 𝑥22 − 𝑥21)(1− 𝑥22 − (𝑥1 − ℓ)2)
.

And the derivative is positive in the domain we are considering.

We now prove step 3. We want to show that d(
√︁
�̃�2 − 𝑥22, 𝑥2, ℓ·) decreases with ℓ, within

our constraints ℓ ≤ 𝑥1 =
√︁
�̃�2 − 𝑥22, 0 ≤ 𝑥2 ≤ �̃�. If we split the segment joining �̃� and 𝑦 in

half, with respect to the metric in 𝒳 , we see that due to the monotonicity proved in step 1, the

segment that is farther to the origin is longer inℳ than the other one and so d(·) is greater for

this half of the segment than for the original one. In symbols, let 𝑟 be the middle point of the

segment joining �̃� and 𝑦. We have by monotonicity that d(𝑥1, 𝑥2, ℓ/2) ≥ d(𝑥1, 𝑥2 − ℓ/2, ℓ/2). So

d(𝑥1, 𝑥2, ℓ/2) =
𝑑(�̃�,𝑟)
ℓ/2 ≥

𝑑(�̃�,𝑟)+𝑑(𝑟,𝑦)
ℓ = d(𝑥1, 𝑥2, ℓ). Thus,

d(𝑥1, 𝑥2, ℓ) ≤ lim
ℓ→0

d(

√︁
�̃�2 − 𝑥22, 𝑥2, ℓ) = lim

ℓ→0

1

2ℓ
log

⎛⎜⎜⎝1 + ℓ/

(︂√︀
1− 𝑥22 −

√︁
�̃�2 − 𝑥22

)︂
1− ℓ/

(︂√︀
1− 𝑥22 +

√︁
�̃�2 − 𝑥22

)︂
⎞⎟⎟⎠

1
= lim

ℓ→0

√︀
1− 𝑥22

1− �̃�2 − 2ℓ
√︁
�̃�2 − 𝑥22 + ℓ2

=

√︀
1− 𝑥22

1− �̃�2
.

We used L’Hôpital’s rule for 1 . We can maximize the last the result of the limit by setting

𝑥2 = 0 and obtain that for any two different �̃�, 𝑦 ∈ 𝒳

𝑑(𝑥, 𝑦)

‖�̃�− 𝑦‖
≤ 1

1− �̃�2
=

1

1− tanh2(𝑅)
= cosh2(𝑅).

The lower bound is similar, assume that ℓ > 𝑥1 and define 𝑟 as above. We assume again without

loss of generality that 𝑥1 ≥ ℓ− 𝑥1. Then

𝑑(𝑥, 𝑟) + 𝑑(𝑟, 𝑦)

ℓ
≥ 𝑑(𝑥, 𝑟)

ℓ− 𝑥1
⇐⇒ 𝑑(𝑟, 𝑦)

𝑥1
≥ 𝑑(𝑥, 𝑟)

ℓ− 𝑥1

and the latter is true by the monotonicity proved in step 1. This means that we can also consider

ℓ ≤ 𝑥1. But this time, according to step 2, we want 𝑥1 to be the lowest possible, so it is enough

to consider 𝑥1 = ℓ. Using step 1 again, we obtain that the lowest value of d(·) can be bounded

by the limit limℓ→0 d(ℓ, 𝑥2, ℓ) which using L’Hôpital’s rule in 1 is

d(𝑥1, 𝑥2, ℓ) ≥ lim
ℓ→0

d(ℓ, 𝑥2, ℓ) = lim
ℓ→0

1

2ℓ
log

(︃
1 +

2ℓ√︀
1− 𝑥22 − ℓ

)︃

1
= lim

ℓ→0

2(
√

1−𝑥22−ℓ)+2ℓ

(
√

1−𝑥22−ℓ)2

2(1 + 2ℓ/(
√︀
1− 𝑥22 − ℓ))

=
1√︀

1− 𝑥22
.

The expression is minimized at 𝑥2 = 0 and evaluates to 1.
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The proof of the corresponding lemma for the sphere is analogous, we add it for completeness.

Lemma 3.6.3. Let 𝑥, 𝑦 ∈ 𝐵𝑅 = Exp𝑥0(�̄�(0, 𝑅)) ⊆ ℳ𝐾 be two different points, where ℳ𝐾 is

the spherical space with constant sectional curvature 𝐾 = 1, and 𝑅 < 𝜋/2. Then, we have

cos2(𝑅) ≤ 𝑑(𝑥, 𝑦)

‖�̃�− 𝑦‖
≤ 1.

Proof We proceed in a similar way than with the hyperbolic case. We can also work with 𝑑 = 2

only, since �̃�, 𝑦 and �̃�0 lie on a plane. We parametrize a general pair of points as �̃� = (𝑥1, 𝑥2) ∈ 𝒳
and 𝑦 = (𝑥1 − ℓ, 𝑥2) ∈ 𝒳 , so 𝑥21 + 𝑥22 ≤ �̃�2, for �̃� = tan(𝑅) and by definition ℓ = ‖�̃�− 𝑦‖.

Let d(𝑥1, 𝑥2, ℓ)
def
= 𝑑(𝑥, 𝑦)/‖�̃�− 𝑦‖. We proceed to prove the result in three steps, similarly to

the hyperbolic case.

1. If 𝑥1 = ℓ then d(𝑥1, 𝑥2, ℓ) decreases whenever 𝑥1 increases. This allows to prove that it is

enough to consider points in which ℓ ≤ 𝑥1.

2. 𝜕d(·)
𝜕𝑥1
≤ 0, whenever ℓ ≤ 𝑥1. So we can consider 𝑥1 =

√︁
�̃�2 − 𝑥22 only.

3. With the constraints above, d(·) increases with ℓ, so in order to lower bound d(·) we can

consider limℓ→0 d(
√︀
�̃�− 𝑥2, 𝑥2, ℓ) =

√︀
1 + 𝑥22/(1 + �̃�2). This is minimized at 𝑥2 = 0 and

evaluates to 1/(1 + �̃�2).

For the first step, we compute the partial derivative:

𝜕d(𝑥1, 𝑥2, 𝑥1)

𝜕𝑥1
=
𝑥1
√︀

1 + 𝑥22/(1 + 𝑥21 + 𝑥22)− arccos
(︁√︀

(1 + 𝑥22)/(1 + 𝑥21 + 𝑥22)
)︁

𝑥21
. (3.6.5)

In order to see that it is non-positive, we compute the partial derivative of the denominator

with respect to 𝑥2 and obtain 2𝑥31𝑥2√
1+𝑥22(1+𝑥

2
1+𝑥

2
2)
≥ 0, so in order to maximize (3.6.5) we set

𝑥2 =
√︁
�̃�− 𝑥21. In that case, the numerator is

𝑥1
√︀
1 +𝑅2 − 𝑥21
1 +𝑅2

− arccos

⎛⎝√︃1 +𝑅2 − 𝑥21
1 +𝑅2

⎞⎠ , (3.6.6)

and its derivative with respect to 𝑥1 is − 2𝑥21
(1+𝑅2)

√
1+𝑅2−𝑥21

≤ 0. and given that (3.6.6) with 𝑥1 = 0

evaluates to 0 we conclude that (3.6.5) is non-positive. Similarly to Lemma 3.6.2, suppose the

horizontal segment that joins �̃� and 𝑦 passes through 𝑟
def
= (0, 𝑥2). And suppose without loss of

generality that 𝑑(𝑥, 𝑟) ≥ 𝑑(𝑟, 𝑦), i.e. 𝑥1 ≥ ℓ− 𝑥1. Then by the monotonicity we just proved, we

have
𝑑(𝑥, 𝑟)

‖�̃�− 𝑟‖
= d(𝑥1, 𝑥2, 𝑥1) ≤ d(ℓ− 𝑥1, 𝑥2, ℓ− 𝑥1) =

𝑑(𝑟, 𝑦)

‖𝑟 − 𝑦‖
. (3.6.7)

And this implies d(𝑥1, 𝑥2, 𝑥1) ≤ d(𝑥1, 𝑥2, ℓ). Indeed, that is equivalent to show

𝑑(𝑥, 𝑟)

‖�̃�− 𝑟‖
≤ 𝑑(𝑥, 𝑦)

‖�̃�− 𝑦‖
=
𝑑(𝑥, 𝑟) + 𝑑(𝑟 + 𝑦)

‖�̃�− 𝑟‖+ ‖𝑟 − 𝑦‖
.
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Which is true, since after simplifying we arrive to (3.6.7). So in order to lower bound d(·), it is

enough to consider ℓ ≤ 𝑥1.
We focus on step 2 now. We have

𝜕d(𝑥1, 𝑥2, ℓ)

𝜕𝑥1
=

√︀
1 + 𝑥22(ℓ− 2𝑥1)

(1 + 𝑥22 + (ℓ− 𝑥1)2)(1 + 𝑥22 + 𝑥21)
.

which is non-positive given the restrictions we imposed after step 1. So in order to lower bound

d(·) we can consider 𝑥1 =
√︁
�̃�− 𝑥22 only.

Finally, in order to complete step 3 we compute

𝜕d(
√︁
�̃�− 𝑥22, 𝑥2, ℓ)
𝜕ℓ

=

√︀
1 + 𝑥22

ℓ(1 + �̃�2) + ℓ3 − 2ℓ2
√︁
�̃�2 − 𝑥22

− 1

ℓ2
arccos

⎛⎜⎜⎝ 1 + �̃�2 − ℓ
√︁
�̃�2 − 𝑥22√︂

(1 + �̃�2)(1 + �̃�2 + ℓ2 − 2ℓ
√︁
�̃�2 − 𝑥22)

⎞⎟⎟⎠
And in order to prove that this is non-negative, we will prove that the same expression is

non-negative, when multiplied by ℓ2. We compute the partial derivative of the aforementioned

expression with respect to ℓ:

𝜕

𝜕ℓ

⎛⎝𝜕d(
√︁
�̃�− 𝑥22, 𝑥2, ℓ)
𝜕ℓ

ℓ2

⎞⎠ =
2ℓ
√︀

1 + 𝑥22(
√︁
�̃�2 − 𝑥22 − ℓ)

(1 + �̃�2 + ℓ2 − 2ℓ
√︁
�̃�2 − 𝑥22)2

≥ 0.

And ℓ2(𝜕d(
√︁
�̃�− 𝑥22, 𝑥2, ℓ)/𝜕ℓ) evaluated at 0 is 0 for all choices of parameters 𝑅 and 𝑥2 in

the domain. So we conclude that 𝜕d(
√︁
�̃�− 𝑥22, 𝑥2, ℓ)/𝜕ℓ ≥ 0.

Thus, we can consider the limit when ℓ → 0 in order to lower bound d(·). In the defined

domain, we have

lim
ℓ→0

d(

√︁
�̃�− 𝑥2, 𝑥2, ℓ) = lim

ℓ→0

1

ℓ
arccos

⎛⎜⎜⎝ 1 + �̃�2 − 𝑥
√︁
�̃�2 − 𝑥22√︀

1 + �̃�2

√︂
1 + 𝑥22 + (ℓ−

√︁
�̃�2 − 𝑥22)2

⎞⎟⎟⎠
1
= lim

ℓ→0

√︀
1 + 𝑥22

1 + �̃�2 + ℓ2 − 2ℓ
√︁
�̃�2 − 𝑥22

=

√︀
1 + 𝑥22

1 + �̃�2
.

We used L’Hôpital’s rule for 1 . Now, the right hand side of the previous expression is minimized

at 𝑥2 = 0 so we conclude that we have

cos2(𝑅) =
1

1 + tan2(𝑅)
=

1

1 + �̃�2
≤ d(𝑥1, 𝑥2, ℓ) =

𝑑(𝑝, 𝑞)

‖𝑝− 𝑞‖
.

The upper bound uses again a similar argument. Assume that ℓ > 𝑥1 and define 𝑟 as above.
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We assume again without loss of generality that 𝑥1 ≥ ℓ− 𝑥1. Then

𝑑(𝑥, 𝑟) + 𝑑(𝑟, 𝑦)

ℓ
≤ 𝑑(𝑥, 𝑟)

ℓ− 𝑥1
⇐⇒ 𝑑(𝑟, 𝑦)

𝑥1
≤ 𝑑(𝑥, 𝑟)

ℓ− 𝑥1

and the latter is true by the monotonicity proved in step 1. Consequently we can just consider

the points that satisfy ℓ ≤ 𝑥1. By step 2, d(·) is maximal whenever 𝑥1 is the lowest possible, so

it is enough to consider 𝑥1 = ℓ. Using step 1 again, we obtain that the greatest value of d(·) can

be bounded by the limit limℓ→0 d(ℓ, 𝑥2, ℓ) which using L’Hôpital’s rule in 1 and simplifying is

d(𝑥1, 𝑥2, ℓ) ≤ lim
ℓ→0

d(ℓ, 𝑥2, ℓ) = lim
ℓ→0

1

ℓ
arccos

(︃√︃
1 + 𝑥22

1 + ℓ2 + 𝑥22

)︃
1
=

1√︀
1 + 𝑥22

.

The expression is maximized at 𝑥2 = 0 and evaluates to 1.

3.6.3 Angle deformation

Lemma 3.6.4. Let 𝑥, 𝑦 ∈ 𝐵𝑅 = Exp𝑥0(�̄�(0, 𝑅)) ⊆ ℳ𝐾 be two different points and different

from 𝑥0, where ℳ𝐾 is a manifold constant sectional curvature 𝐾 ∈ {1,−1}, and if 𝐾 = 1, then

𝑅 < 𝜋/2. Let �̃� be the angle ∠𝑥0𝑥𝑦, formed by the vectors 𝑥0 − 𝑥 and 𝑦 − 𝑥. Let 𝛼 be the

corresponding angle between the vectors Exp−1
𝑥 (𝑥0) and Exp−1

𝑥 (𝑦). The following holds:

sin(𝛼) = sin(�̃�)

√︃
1 +𝐾‖�̃�‖2

1 +𝐾‖�̃�‖2 sin2(�̃�)
, cos(𝛼) = cos(�̃�)

√︃
1

1 +𝐾‖�̃�‖2 sin2(�̃�)
.

Proof Note that we can restrict ourselves to 𝛼 ∈ [0, 𝜋] because we have (̃−𝑤) = −�̃� (recall our

notation about vectors with tilde). This means that the result for the range 𝛼 ∈ [−𝜋, 0] can be

deduced from the result for −𝛼.

We start with the case 𝐾 = −1. We can assume without loss of generality that the dimension

is 𝑛 = 2, and that the coordinates of �̃� are (0, 𝑥2), for 𝑥2 ≤ tanh(𝑅) that 𝑦 = (𝑦1, 𝑦2), for some

𝑦1 ≤ 0 and 𝛿
def
= ∠𝑦�̃�0�̃� ∈ [0, 𝜋/2], since we can make the distance ‖�̃�− 𝑦‖ as small as we want.

Recall �̃�0 = 0𝑛. We recall that 𝑑(𝑥, 𝑥0) = arctanh(‖�̃�‖) and we note that sinh(arctanh(𝑡)) = 𝑡
1−𝑡2 ,

so that sinh(𝑑(𝑥, 𝑥0)) = ‖�̃�‖/
√︀
1− ‖�̃�‖2, for any �̃� ∈ 𝒳 . We will apply the hyperbolic and

Euclidean law of sines Fact 3.6.5 in order to compute the value of sin(𝛼) with respect to �̃�. Let

�̃� and �̃� be points in the border of 𝐵(0, 1) such that the segment joining �̃� and �̃� is a chord that

contains �̃� and 𝑦 and ‖�̃�−�̃�‖ ≤ ‖�̃�−�̃�‖. So ‖�̃�−�̃�‖ and ‖�̃�−�̃�‖ are
√︀

1− ‖�̃�‖2 sin2(�̃�)−‖�̃�‖ cos(�̃�)
and

√︀
1− ‖�̃�‖2 sin2(�̃�) + ‖�̃�‖ cos(�̃�), respectively. We have

sin(𝛼)
1
=

sinh(𝑑(𝑥0, 𝑦)) sin(𝛿)

sinh(𝑑(𝑥, 𝑦))

2
=

‖�̃�0 − 𝑦‖√︀
1− ‖�̃�0 − 𝑦‖2

· ‖�̃�− 𝑦‖ sin(�̃�)
‖�̃�0 − 𝑦‖

· 1

sinh(𝑑(𝑥, 𝑦))

3
=

sin(�̃�)√︀
1− ‖�̃�‖2 + ‖�̃�− 𝑦‖(−2‖�̃�‖ cos(�̃�) + ‖�̃�− 𝑦‖)

· ‖�̃�− 𝑦‖
sinh(𝑑(𝑥, 𝑦))

4
=

sin(�̃�)√︀
1− ‖�̃�‖2

lim
𝑑(𝑥,𝑦)→0

‖�̃�− 𝑦‖ 1

sinh(𝑑(𝑥, 𝑦))
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5
=

sin(�̃�)√︀
1− ‖�̃�‖2

lim
𝑑(𝑥,𝑦)→0

(𝑒2𝑑(𝑥,𝑦) − 1)(‖�̃�− �̃�‖ · ‖�̃�− �̃�‖)
𝑒2𝑑(𝑥,𝑦)(‖�̃�− �̃�‖+ ‖�̃�− �̃�‖)

· 2𝑒𝑑(𝑥,𝑦)

𝑒2𝑑(𝑥,𝑦) − 1

=
sin(�̃�)√︀
1− ‖�̃�‖2

· 2‖�̃�− �̃�‖ · ‖�̃�− �̃�‖
‖�̃�− �̃�‖+ ‖�̃�− �̃�‖

6
=

sin(�̃�)√︀
1− ‖�̃�‖2

· 2(1− ‖�̃�‖
2 sin2(�̃�)− ‖�̃�‖2 cos2(�̃�))

2
√︀

1− ‖�̃�‖2 sin2(�̃�)
= sin(�̃�)

√︃
1− ‖�̃�‖2

1− ‖�̃�‖2 sin2(�̃�)
.

In 1 we used the hyperbolic sine theorem. In 2 we used the expression above regarding

segments that pass through the origin, and the Euclidean sine theorem. In 3 , we simplify and

use that the coordinates of 𝑦 are (− sin(�̃�)‖�̃�−𝑦‖, ‖�̃�‖−cos(�̃�)‖�̃�−𝑦‖). Then, in 4 , since sin(𝛼)

does not depend on ‖�̃�− 𝑦‖, we can take the limit when 𝑑(𝑥, 𝑦)→ 0, by which we mean we take

the limit 𝑦 → �̃� by keeping the angle �̃� constant. Since a posteriori the limit of each fraction

exists, we compute them one at a time. 5 uses (3.6.4) and the definition of sinh(𝑑(𝑥, 𝑦)) for the

last factor. The equality for the other factor can be checked with (3.6.4). In 6 we substitute

‖�̃�− �̃�‖ and ‖�̃�− �̃�‖ by their values.

The spherical case is similar to the hyperbolic case. We also assume without loss of generality

that the dimension is 𝑛 = 2. Define 𝑦 as a point such that ∠�̃�0�̃�𝑦 = �̃�. We can assume

without loss of generality that the coordinates of �̃� are (0, 𝑥2), that 𝑦 = (𝑦1, 𝑦2), for 𝑦1 ≤ 0, and

𝛿
def
= ∠𝑦�̃�0�̃� ∈ [0, 𝜋/2], since we can make the distance ‖�̃� − 𝑦‖ as small as we want. We recall

that by (3.6.2) we have 𝑑(𝑥0, 𝑥) = arctan(‖�̃�0 − �̃�‖) and we note that sin(arctan(𝑡)) = 𝑡
1+𝑡2

, so

that sin(𝑑(𝑥0, 𝑥)) = ‖�̃�0 − �̃�‖/
√︀

1 + ‖�̃�0 − �̃�‖2, for any �̃� ∈ 𝒳 . We will apply the spherical and

Euclidean law of sines Fact 3.6.5 in order to compute the value of sin(𝛼) with respect to �̃�. We

have

sin(𝛼)
1
=

sin(𝑑(𝑥0, 𝑦)) sin(𝛿)

sin(𝑑(𝑥, 𝑦))

2
=

‖�̃�0 − 𝑦‖√︀
1 + ‖�̃�0 − 𝑦‖2

· ‖�̃�− 𝑦‖ sin(�̃�)
‖�̃�0 − 𝑦‖

1

sin(𝑑(𝑥, 𝑦))

3
=

sin(�̃�)‖�̃�− 𝑦‖√︀
1 + ‖�̃�0 − 𝑦‖2

√︁
1− (1−‖𝑥‖ cos(�̃�)‖�̃�−𝑦‖+‖�̃�‖2)2

(1+‖�̃�‖2)(1+‖�̃�0−𝑦‖2)

4
=

sin(�̃�)‖�̃�− 𝑦‖√︀
‖�̃�− 𝑦‖2(1 + ‖�̃�‖2 − ‖�̃�‖2 cos2(�̃�))/(1 + ‖�̃�‖2)

5
= sin(�̃�)

√︃
1 + ‖�̃�‖2

1 + ‖�̃�‖2 sin2(�̃�)
.

In 1 we used the spherical sine theorem. In 2 we used the expression above regarding

segments that pass through the origin, and the Euclidean sine theorem. In 3 , we use the fact

that the coordinates of 𝑦 are (− sin(�̃�)‖�̃�− 𝑦‖, ‖�̃�‖2 − cos(�̃�)‖�̃�− 𝑦‖), use the distance formula

(3.6.3) and the trigonometric equality sin(arccos(𝑥)) =
√
1− 𝑥2. Then, in 4 and 5 , we multiply

and simplify.

Finally, in both cases, the cosine formula is derived from the identity sin2(𝛼) + cos2(𝛼) = 1

after noticing that the sign of cos(𝛼) and the sign of cos(�̃�) are the same. The latter fact can be

seen to hold true by noticing that 𝛼 is monotonous with respect to �̃� and the fact that �̃� = 𝜋/2

implies sin(𝛼) = 0.
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Fact 3.6.5 (Constant Curvature non-Euclidean Laws of Sines and of Cosines). Let

𝐾 ̸= 0 and let S𝐾(·) and C𝐾(·) denote the special sine and cosine, respectively, defined as

S𝐾(𝑡) = sin(
√
𝐾𝑡) and C𝐾(𝑡) = cos(

√
𝐾𝑡) if 𝐾 > 0, and as S𝐾(𝑡) = sinh(

√
−𝐾𝑡) and C𝐾(𝑡) =

cosh(
√
−𝐾𝑡) if 𝐾 < 0. Let 𝑎, 𝑏, 𝑐 be the lengths of the sides of a geodesic triangle defined on

a manifold of constant sectional curvature 𝐾. Let 𝛼, 𝛽, 𝛾 be the angles of the geodesic triangle,

that are opposite to the sides 𝑎, 𝑏, 𝑐. The following holds:

• Law of sines:
sin(𝛼)

S𝐾(𝑎)
=

sin(𝛽)

S𝐾(𝑏)
=

sin(𝛾)

S𝐾(𝑐)
.

• Law of cosines:

C𝐾(𝑎) = C𝐾(𝑏) C𝐾(𝑐) + cos(𝛼) S𝐾(𝑏) S𝐾(𝑐).

We refer to (Greenberg, 1993) for a proof of these classical theorems.

3.6.4 Gradient deformation and smoothness of 𝑓

Lemma 3.6.4, with �̃� = 𝜋/2, shows that 𝑒1 ⊥ 𝑒𝑗 , for 𝑗 ̸= 1. The rotational symmetry implies

𝑒𝑖 ⊥ 𝑒𝑗 for 𝑖 ̸= 𝑗 and 𝑖, 𝑗 > 1. As in Lemma 3.2.1, let 𝑥 ∈ ℬ𝑅 be a point and assume without

loss of generality that �̃� ∈ span{𝑒1} and ∇𝑓(�̃�) ∈ span{𝑒1, 𝑒2}. It can be assumed without

loss of generality because of the symmetries. So we can assume the dimension is 𝑛 = 2. Using

Lemma 3.2.1 we obtain that �̃� = 0 implies 𝛼 = 0. Also �̃� = 𝜋/2 implies 𝛼 = 𝜋/2, so the adjoint

of the differential of ℎ−1 at 𝑥, (dℎ−1)*𝑥 diagonalizes and has 𝑒1 and 𝑒2 as eigenvectors. We only

need to compute the eigenvalues. The computation of the first one uses that the geodesic passing

from 𝑥0 and 𝑥 can be parametrized as ℎ−1(�̃�0+arctan(�̃�𝑒1)) if 𝐾 = 1 and ℎ−1(�̃�0+arctanh(�̃�𝑒1))

if 𝐾 = −1, by (3.6.1). The derivative of arctan(·) or arctanh(·) reveals that the first eigenvector,

the one corresponding to 𝑒1, is 1/(1 + 𝐾‖�̃�2‖), i.e. ∇𝑓(�̃�)1 = ∇𝐹 (𝑥)1/(1 + 𝐾‖�̃�2‖). For the

second one, let 𝑥 = (𝑥1, 0) and 𝑦 = (𝑦1, 𝑦2), with 𝑦1 = 𝑥1 the second eigenvector results from the

computation, for 𝐾 = −1:

lim
𝑦2→0

𝑑(𝑥, 𝑦)

𝑦2
= lim

𝑦2→0

log(1 + 2𝑦2√
1−𝑥21−𝑦2

)

2𝑦2

1
= lim

𝑦2→0

2√
1−𝑥21−𝑦2

+ 2𝑦2

(
√

1−𝑥21−𝑦2)2

2 + 4𝑦2√
1−𝑥21−𝑦2

=
1√︀

1− 𝑥21
,

and for 𝐾 = 1:

lim
𝑦2→0

𝑑(𝑥, 𝑦)

𝑦2
= lim

𝑦2→0

arccos(

√
1+𝑥21√

1+𝑥21+𝑦
2
2

)

𝑦2

2
= lim

𝑦2→0

√︀
1 + 𝑥21

1 + 𝑥21 + 𝑦22
=

1√︀
1 + 𝑥21

.

So, since 𝑥1 = ‖�̃�‖, we have ∇𝑓(�̃�)2 = ∇𝐹 (𝑥)2/
√︀
1 +𝐾‖�̃�‖2 for 𝐾 ∈ {1,−1}. We used

L’Hôpital’s rule in 1 and 2 .

Also note that if 𝑣 ∈ 𝑇𝑥ℳ𝐾 is a vector normal to ∇𝐹 (𝑥), then 𝑣 is normal to ∇𝑓(𝑥). It

is easy to see this geometrically: Indeed, no matter how ℎ changes the geometry, since it is a

geodesic map, a geodesic in the direction of first-order constant increase of 𝐹 is mapped via ℎ
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to a geodesic in the direction of first-order constant increase of 𝑓 . And the respective gradients

must be perpendicular to all these directions. Alternatively, this can be seen algebraically.

Suppose first 𝑛 = 2, then 𝑣 is proportional to (∇𝐹 (𝑥)2,−∇𝐹 (𝑥)1) = (
√︀
1 +𝐾‖�̃�‖2∇𝑓(�̃�)2,−(1+

𝐾‖�̃�‖2)∇𝑓(�̃�1)). And a vector 𝑣′ normal to ∇𝑓(𝑥) must be proportional to (−∇𝑓(𝑥)2,∇𝑓(𝑥)1).
Let 𝛼 be the angle formed by 𝑣 and −𝑒1, �̃� the corresponding angle formed between 𝑣 and −𝑒1,
and �̃�′ the angle formed by 𝑣′ and −𝑒1. Then we have, using the expression for the vectors

proportional to 𝑣 and 𝑣′:

sin(𝛼) =
−𝑓(𝑥)2√︀

∇𝑓(𝑥)22 + (1 + ‖𝑥‖2)∇𝑓(𝑥)21
and sin(�̃�′) =

−𝑓(𝑥)2√︀
∇𝑓(𝑥)22 +∇𝑓(𝑥)21

and using one equation on the other yields sin(𝛼) = sin(�̃�′)
√︀
(1 +𝐾‖�̃�2‖)/(1 +𝐾‖�̃�2‖ sin2(�̃�′)),

which after applying Lemma 3.6.4 we obtain sin(�̃�′) = sin(�̃�) from which we conclude that �̃�′ = �̃�

given that the angles are in the same quadrant. So 𝑣 ⊥ ∇𝑓(𝑥). In order to prove this for 𝑛 ≥ 3

one can apply the reduction (3.6.14) to the case 𝑛 = 2 that we obtain in the next section.

Combining the results obtained so far in Section 3.6, we can prove Lemma 3.2.1. We continue

by proving Lemma 3.2.3, which will generalize the computations we just performed, in order to

analyze the Hessian of 𝑓 and provide smoothness. Then, in the next section, we combine the

results in Lemma 3.2.1 to prove Lemma 3.2.2.

Proof of Lemma 3.2.1. The lemma follows from Lemmas 3.6.2, 3.6.3, 3.6.4 and the previous

reasoning in this Section 3.6.4.

Proof of Lemma 3.2.3. Recall 𝐹 :ℳ𝐾 → R is a function defined on a manifold of constant

sectional curvature with a point 𝑥* ∈ ℬ𝑅 such that ∇𝐹 (𝑥*) = 0 and we call 𝑅 an upper bound

on 𝑑(𝑥0, 𝑥*), for an initial point 𝑥0.

We will compute the Hessian of 𝑓 = 𝐹 ∘ ℎ−1 and we will bound its spectral norm for any

point �̃� ∈ 𝒳 . We can assume without loss of generality that 𝑛 = 2 and �̃� = (ℓ̃, 0), for ℓ̃ > 0 (the

case ℓ̃ = 0 is trivial), since there is a rotational symmetry with 𝑒1 as axis. This means that by

rotating we could align the top eigenvector of the Hessian at a point so that it is in span{𝑒1, 𝑒2}.
Let 𝑦 = (𝑦1, 𝑦2) ∈ 𝒳 be another point, with 𝑦1 = ℓ̃. We can also assume that 𝑦2 > 0 without

loss of generality, because of our symmetry. Our approach will be the following. We know by

Lemma 3.2.1.b) and by the beginning of this Section 3.6.4 that the adjoint of the differential of

ℎ−1 at 𝑦, (dℎ−1)*𝑦 has Exp−1
𝑦 (𝑥0) and a normal vector to it as eigenvectors. Their corresponding

eigenvalues are 1/(1 +𝐾‖𝑦‖2) and 1/
√︀
1 +𝐾‖𝑦‖2, respectively. Consider the basis {𝑒1, 𝑒2} of

𝑇𝑥ℳ𝐾 as defined at the beginning of this section, i.e. where 𝑒1 is a unit vector proportional to

−Exp−1
𝑥 (𝑥0) and 𝑒2 is the normal vector to 𝑒1 that makes the basis orthonormal. Consider this

basis being transported to 𝑦 using parallel transport and denote the result {𝑣𝑦, 𝑣⊥𝑦 }. Assume we

have the gradient ∇𝐹 (𝑦) written in this basis. Then we can compute the gradient of 𝑓 at 𝑦 by

applying (dℎ−1)*𝑦 to ∇𝐹 (𝑦). In order to do that, we compose the change of basis from {𝑣𝑦, 𝑣⊥𝑦 }
to the basis of eigenvectors of (dℎ−1)*𝑦, then we apply a diagonal transformation given by the

eigenvalues and finally we change the basis to {𝑒1, 𝑒2}. Once this is done, we can differentiate
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with respect to 𝑦2 in order to compute a column of the Hessian. Let �̃� be the angle formed by

the vectors 𝑦 and �̃�. Note that �̃� = arctan(𝑦2/𝑦1). Let 𝛾 be the angle formed by the vectors

(𝑦 − �̃�) and −𝑦. That is, the angle 𝛾 = 𝜋 −∠�̃�𝑦�̃�0. Since 𝑣⊥𝑦 is the parallel transport of 𝑒⊥2 , the

angle between 𝑣⊥𝑦 and the vector Exp−1
𝑦 (𝑥0) is 𝛾. Note we use the same convention as before for

the angles, i.e. 𝛾 is the corresponding angle to 𝛾, meaning that if 𝛾 is the angle between two

intersecting geodesics in ℬ𝑅, then 𝛾 is the angle between the respective corresponding geodesics

in 𝒳 . Note the first change of basis is a rotation and that the angle of rotation is 𝛾 − 𝜋/2. The

last change of basis is a rotation with angle equal to the angle formed by a vector 𝑣 normal to

−𝑦 ( 𝑣 is the one such that −𝑦×𝑣 > 0) and the vector 𝑒2. This vector is equal to �̃�. So we have

∇𝑓(𝑦) =

⎛⎝cos(�̃�) − sin(�̃�)

sin(�̃�) cos(�̃�)

⎞⎠
⎛⎜⎝ 1

1+𝐾(𝑦21+𝑦
2
2)

0

0 1√
1+𝐾(𝑦21+𝑦

2
2)

⎞⎟⎠
⎛⎝sin(𝛾) − cos(𝛾)

cos(𝛾) sin(𝛾)

⎞⎠∇𝐹 (𝑦)
(3.6.8)

We want to take the derivative of this expression with respect to 𝑦2 and we want to evaluate

it at 𝑦2 = 0. Let the matrices above be 𝐴, 𝐵 and 𝐶 so that ∇𝑓(𝑦) = 𝐴𝐵𝐶∇𝐹 (𝑦). Using

Lemma 3.2.1.c) we have

sin(𝛾) = sin(𝛾)

√︃
1 +𝐾(𝑦21 + 𝑦22)

1 +𝐾(𝑦21 + 𝑦22) sin
2(𝛾)

1
= cos(�̃�)

√︃
1 +𝐾(𝑦21 + 𝑦22)

1 +𝐾(𝑦21 + 𝑦22) cos
2(�̃�)

,

cos(𝛾) = − sin(�̃�)

√︃
1

1 +𝐾(𝑦21 + 𝑦22) cos
2(�̃�)

,

(3.6.9)

where 1 follows from sin(𝛾) = sin(�̃�+ 𝜋/2) = cos(�̃�). Now we compute some quantities

𝐴|𝑦2=0 = 𝐼, 𝐵|𝑦2=0 =

⎛⎜⎝ 1
1+𝐾𝑦21

0

0 1√
1+𝐾𝑦21

⎞⎟⎠ , 𝐶|𝑦2=0 = 𝐼,

𝜕𝐴

𝜕𝑦2

⃒⃒⃒⃒
𝑦2=0

=
𝜕�̃�

𝜕𝑦2

⃒⃒⃒⃒
𝑦2=0

·

⎛⎝0 −1

1 0

⎞⎠ 1
=

⎛⎝ 0 −1
𝑦1

1
𝑦1

0

⎞⎠ ,

𝜕𝐵

𝜕𝑦2

⃒⃒⃒⃒
𝑦2=0

=

⎛⎝ 2𝐾𝑦2
(1+𝐾(𝑦21+𝑦

2
2))

2 0

0 2𝐾𝑦2
2(1+𝐾(𝑦21+𝑦

2
2))

3/2

⎞⎠⃒⃒⃒⃒⃒⃒
𝑦2=0

=

⎛⎝0 0

0 0

⎞⎠ ,

𝜕𝐶

𝜕𝑦2

⃒⃒⃒⃒
𝑦2=0

2
=

⎛⎜⎝ 0 1

𝑦1
√

1+𝐾𝑦21

−1

𝑦1
√

1+𝐾𝑦21
0

⎞⎟⎠ .

Equalities 1 and 2 follow after using (3.6.9), �̃� = arctan(𝑦2𝑦1 ) and taking derivatives. Now we
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differentiate (3.6.8) with respect to 𝑦2 and evaluate to 𝑦2 = 0 using the chain rule. The result is⎛⎝∇2𝑓(�̃�)12

∇2𝑓(�̃�)22

⎞⎠ =

(︂
𝜕𝐴

𝜕𝑦2
𝐵𝐶∇𝐹 (𝑥) +𝐴

𝜕𝐵

𝜕𝑦2
𝐶∇𝐹 (𝑥) +𝐴𝐵

𝜕𝐶

𝜕𝑦2
∇𝐹 (𝑥) +𝐴𝐵𝐶

𝜕∇𝐹 (𝑥)
𝜕𝑦2

)︂⃒⃒⃒⃒
𝑦2=0

=

⎛⎜⎝ −∇𝑓(�̃�)2
𝑦1
√

1+𝐾𝑦21
∇𝑓(�̃�)1

𝑦1(1+𝐾𝑦21)

⎞⎟⎠+

⎛⎝0

0

⎞⎠+

⎛⎝ ∇𝑓(�̃�)2
𝑦1(1+𝐾𝑦21)

3/2

−∇𝑓(�̃�)1
𝑦1(1+𝐾𝑦21)

⎞⎠+

⎛⎝ ∇2𝐹 (𝑥)12
(1+𝐾𝑦21)

3/2

∇2𝐹 (𝑥)22
1+𝐾𝑦21

⎞⎠
Computing the other column of the Hessian is easier. We can just consider (3.6.8) with �̃� = 0,

𝛾 = 𝜋/2 and vary 𝑦1. Taking derivatives with respect to 𝑦1 gives⎛⎝∇2𝑓(�̃�)11

∇2𝑓(�̃�)21

⎞⎠ =

⎛⎝−2𝐾𝑦1∇𝑓(�̃�)1
(1+𝐾𝑦21)

2

−𝐾𝑦1∇𝑓(�̃�)2
(1+𝐾𝑦21)

3/2

⎞⎠+

⎛⎝ ∇2𝐹 (𝑥)11
(1+𝐾𝑦21)

2

∇2𝐹 (𝑥)21
(1+𝐾𝑦21)

3/2

⎞⎠ .

Note in the computations of both of the columns of the Hessian we have used

𝜕∇𝐹 (𝑦)𝑖
𝜕𝑦1

= ∇𝐹 (𝑥)𝑖1 ·
1

1 +𝐾𝑦21
and

𝜕∇𝐹 (𝑦)𝑖
𝜕𝑦2

⃒⃒⃒⃒
𝑦2=0

= ∇𝐹 (𝑥)𝑖2 ·
1√︀

1 +𝐾𝑦21
,

for 𝑖 = 1, 2. The eigenvalues of the adjoint of the differential of ℎ−1 appear as a factor because

we are differentiating with respect to the geodesic in 𝒳 which moves at a different speed than

the corresponding geodesic in ℬ𝑅. Note as well, as a sanity check, that the cross derivatives are

equal, since

− 1

𝑦1
√︀

1 +𝐾𝑦21
+

1

𝑦1(1 +𝐾𝑦21)
3/2

=
1

𝑦1
√︀
1 +𝐾𝑦21

(︂
−1 + 1

1 +𝐾𝑦21

)︂
=

−𝐾𝑦1
(1 +𝐾𝑦21)

3/2
.

Finally, we bound the new smoothness constant �̃� by bounding the spectral norm of this Hessian.

First note that using 𝑦1 = ℓ̃ we have that 1√
1+𝐾ℓ̃2

= C𝐾(ℓ) and then for 𝐾 = −1 it is ℓ̃ = tanh(ℓ)

and for 𝐾 = 1 it is ℓ̃ = tan(ℓ), where ℓ = 𝑑(𝑥, 𝑥0) < 𝑅. We have that since there is a point

𝑥* ∈ ℬ𝑅 such that ∇𝐹 (𝑥*) = 0 and 𝐹 is 𝐿-smooth, then it is ‖∇𝐹 (𝑥)‖ ≤ 2𝐿𝑅. Similarly, by

𝐿-smoothness |∇2𝐹 (𝑥)𝑖𝑗 | ≤ 𝐿. We are now ready to prove �̃�-smoothness of 𝑓 .

�̃�2 ≤ max
�̃�∈𝒳
‖∇2𝑓(�̃�)‖22

≤ max
�̃�∈𝒳
‖∇2𝑓(�̃�)‖2𝐹 = max

�̃�∈𝒳
{∇2𝑓(�̃�)11 + 2∇2𝑓(�̃�)12 +∇2𝑓(�̃�)22}

≤ 𝐿2([C4
𝐾(𝑅) + 4𝑅 S𝐾(𝑅) C3

𝐾(𝑅)]2 + 2[C3
𝐾(𝑅) + 2𝑅 S𝐾(𝑅) C2

𝐾(𝑅)]2 +C4
𝐾(𝑅))

and this can be bounded by 44𝐿2max{1, 𝑅2} if𝐾 = 1 and 44𝐿2max{1, 𝑅2}C8
𝐾(𝑅) if𝐾 = −1. In

any case, it is𝑂(𝐿2). We note that for tilted convex functions we have that gradient Lipschitzness,

smoothness and bounded Hessian are equivalent properties. Indeed, this is a classical result for

convex functions and the proof of the implication that does not hold for general differentiable

functions (showing that smoothness implies gradient Lipschitzness) only requires that a point

with zero gradient is a global minimizer, cf. (Zhou, 2018) for instance. This property is true for

tilted convex functions.
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3.6.5 Proof of Lemma 3.2.2

Proof Assume for the moment that the dimension is 𝑛 = 2. We can assume without loss of

generality that �̃� = (ℓ̃, 0). We are given two vectors, that are the gradients ∇𝐹 (𝑥), ∇𝑓(�̃�) and

a vector 𝑤 ∈ 𝑇𝑥ℳ𝐾 . Let 𝛿 be the angle between �̃� and −�̃�. Let 𝛿 be the corresponding angle,

i.e. the angle between 𝑤 and 𝑢 def
= Exp−1

𝑥 (𝑥0). Let 𝛼 be the angle in between ∇𝐹 (𝑥) and 𝑢. Let

𝛽 be the angle in between ∇𝑓(�̃�) and −𝑥. �̃� and 𝛽 are defined similarly. We claim

⟨ ∇𝐹 (𝑥)
‖∇𝐹 (𝑥)‖ ,

𝑤
‖𝑤‖⟩

⟨ ∇𝑓(�̃�)
‖∇𝑓(�̃�)‖ ,

�̃�
‖�̃�‖⟩

=

√︃
1 +𝐾ℓ̃2

(1 +𝐾ℓ̃2 sin2(𝛿))(1 +𝐾ℓ̃2 cos2(𝛽))
. (3.6.10)

Let’s see how to arrive to this expression. By Lemma 3.2.1.c) we have

tan(𝛼) =
tan(𝛽)√︀
1 +𝐾ℓ̃2

. (3.6.11)

From this relationship we deduce

cos(𝛼) = cos(𝛽)

√︃
1 +𝐾ℓ̃2

1 +𝐾ℓ̃2 cos2(𝛽)
, (3.6.12)

that comes from squaring (3.6.11), reorganizing terms and noting that sign(cos(𝛼)) = sign(cos(𝛽))

which is implied by Lemma 3.2.1.c). We are now ready to prove the claim (3.6.10) (for 𝑛 = 2).

We have

⟨ ∇𝐹 (𝑥)
‖∇𝐹 (𝑥)‖ ,

𝑤
‖𝑤‖⟩

⟨ ∇𝑓(�̃�)
‖∇𝑓(�̃�)‖ ,

�̃�
‖�̃�‖⟩

=
cos(𝛼− 𝛿)
cos(𝛽 − 𝛿)

2
=

cos(𝛿) + tan(𝛼) sin(𝛿)

cos(𝛽) cos(𝛿) + sin(𝛽) sin(𝛿)
cos(𝛼)

3
=

cos(𝛿)√
1+𝐾ℓ̃2 sin2(𝛿)

+ tan(𝛽)√
1+𝐾ℓ̃2

sin(𝛿)
√

1+𝐾ℓ̃2√
1+𝐾ℓ̃2 sin2(𝛿)

cos(𝛽) cos(𝛿) + sin(𝛽) sin(𝛿)
cos(𝛽)

√︃
1 +𝐾ℓ̃2

1 +𝐾ℓ̃2 cos2(𝛽)

4
=

√︃
1 +𝐾ℓ̃2

(1 +𝐾ℓ̃2 sin2(𝛿))(1 +𝐾ℓ̃2 cos2(𝛽))
.

Equality 1 follows by the definition of 𝛼, 𝛿, 𝛿, and 𝛽. In 2 , we used trigonometric identities. In

3 we used Lemma 3.2.1.c), (3.6.11) and (3.6.12). By reordering the expression, the denominator

cancels out with a factor of the numerator in 4 .

In order to work with arbitrary dimension, we note it is enough to prove it for 𝑛 = 3, since in

order to bound ⟨ ∇𝐹 (𝑥)
‖∇𝐹 (𝑥)‖ ,

𝑣
‖𝑣‖⟩/⟨

∇𝑓(�̃�)
‖∇𝑓(�̃�)‖ ,

𝑣
‖𝑣‖⟩, it is enough to consider the following submanifold

ℳ′
𝐾

def
= Exp𝑥(span{𝑣,Exp−1

𝑥 (𝑥0),∇𝐹 (𝑥)}).

for an arbitrary vector 𝑣 ∈ 𝑇𝑥ℳ𝐾 and a point 𝑥 defined as above. The case 𝑛 = 3 can be further

reduced to the case 𝑛 = 2 in the following way. Suppose ℳ′
𝐾 is a three dimensional manifold
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(if it is one or two dimensional there is nothing to do). Define the following orthonormal basis

of 𝑇𝑥ℳ𝐾 , {𝑒1, 𝑒2, 𝑒3} where 𝑒1 = −Exp−1
𝑥 (𝑥0)/‖Exp−1

𝑥 (𝑥0)‖, 𝑒2 is a unit vector, normal to

𝑒1 such that 𝑒2 ∈ span{𝑒1,∇𝐹 (𝑥)}. And 𝑒3 is a vector that completes the orthonormal basis.

In this basis, let 𝑣 be parametrized by ‖𝑣‖(sin(𝛿), cos(𝜈) cos(𝛿), sin(𝜈) cos(𝛿)), where 𝛿 can be

thought as the angle between the vector 𝑣 and its projection onto the plane span{𝑒2, 𝑒3} and

𝜈 can be thought as the angle between this projection and its projection onto 𝑒2. Similarly we

parametrize 𝑣 by ‖𝑣‖(sin(𝛿), cos(𝜈) cos(𝛿), sin(𝜈) cos(𝛿)), where the base used is the analogous

base to the previous one, i.e. the vectors {𝑒1, 𝑒2, 𝑒3}. Taking into account that 𝑒2 ⊥ 𝑒1, 𝑒3 ⊥ 𝑒1,
𝑒2 ⊥ 𝑒1, 𝑒3 ⊥ 𝑒1, and the fact that 𝑒1 is parallel to −Exp𝑥(𝑥0), by the radial symmetry of the

geodesic map we have that 𝜈 = 𝜈. Also, by looking at the submanifold Exp𝑥(span{𝑒1, 𝑣}) and

using Lemma 3.2.1.c) we have sin(𝛿) = sin(𝛿)

√︂
1+𝐾ℓ̃2

1+𝐾ℓ̃2 sin(𝛿)
. If we want to compare ⟨∇𝐹 (𝑥), 𝑣⟩

with ⟨∇𝑓(�̃�), 𝑣⟩ we should be able to just zero out the third components of 𝑣 and 𝑣 and work in

𝑛 = 2. But in order to completely obtain a reduction to the two-dimensional case we studied a

few paragraphs above, we would need to prove that if we call 𝑤 def
= (sin(𝛿), cos(𝜈) cos(𝛿), 0) the

vector 𝑣 with the third component made 0, then �̃� is in the same direction of the vector 𝑣, when

the third component is made 0. The norm of these two vectors will not be the same, however.

Let �̃�′ = (sin(𝛿), cos(𝜈) cos(𝛿), 0) be the vector 𝑣 when the third component is made 0. Then

‖𝑤‖ = ‖𝑣‖
√︁

sin2(𝛿) + cos2(𝛿) cos2(𝜈) and ‖�̃�′‖ = ‖𝑣‖
√︁
sin2(𝛿) + cos2(𝛿) cos2(𝜈). (3.6.13)

But indeed, we claim

�̃� and �̃�′ have the same direction. (3.6.14)

This is easy to see geometrically: since we are working with a geodesic map, the submanifolds

Exp𝑥(span{𝑣, 𝑒3}) and Exp𝑥(span{𝑒1, 𝑒2}) contain 𝑤. Similarly the submanifolds 𝑥+span{𝑣, 𝑒3}
and 𝑥+span{𝑒1, 𝑒2} contain �̃�′. If the intersections of each of these pair of manifolds is a geodesic

then the geodesic map must map one intersection to the other one, implying �̃� is proportional to

�̃�′. If the intersections are degenerate the case is trivial. Alternatively, one can prove this fact

algebraically after some computations. It will be convenient for the rest of the proof so we will

also include it here. If we call 𝛿* and 𝛿′ the angles formed by, respectively, the vectors 𝑒2 and

𝑤, and the vectors 𝑒2 and �̃�′, then we have �̃�′ is proportional to �̃� if 𝛿′ = 𝛿*, or equivalently

𝛿′ = 𝛿*. Using the definitions of 𝑤 and �̃�′ we have

sin(𝛿*) = sin

(︂
arctan

(︂
sin(𝛿)

cos(𝜈) cos(𝛿)

)︂)︂
=

tan(𝛿)/ cos(𝜈)

(tan(𝛿)/ cos(𝜈))2 + 1

=
sin(𝛿)√︀

sin2(𝛿) + cos2(𝜈) cos2(𝛿)
,
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and analogously

sin(𝛿′) = sin

(︃
arctan

(︃
sin(𝛿)

cos(𝜈) cos(𝛿)

)︃)︃
=

tan(𝛿)/ cos(𝜈)

(tan(𝛿)/ cos(𝜈))2 + 1

=
sin(𝛿)√︁

sin2(𝛿) + cos2(𝜈) cos2(𝛿)
.

(3.6.15)

Using Lemma 3.2.1.c) for the pairs 𝛿′, 𝛿′ and 𝛿*, 𝛿*, and the equations above we obtain

sin(𝛿*) =

sin(𝛿)

√︂
1+𝐾ℓ̃2

1+𝐾ℓ̃2 sin2(𝛿)√︂
sin2(𝛿) 1+𝐾ℓ̃2

1+𝐾ℓ̃2 sin2(𝛿)
+ cos2(𝜈) cos2(𝛿)

1+𝐾ℓ̃2 sin2(𝛿)

=
sin(𝛿)

√︀
1 +𝐾ℓ̃2√︁

sin2(𝛿)(1 +𝐾ℓ̃2) + cos2(𝜈) cos2(𝛿)
,

and

sin(𝛿′) =
sin(𝛿)√︁

sin2(𝛿) + cos2(𝜈) cos2(𝛿)

⎯⎸⎸⎷ 1 +𝐾ℓ̃2

1 +𝐾ℓ̃2
(︁

sin2(𝛿)

sin2(𝛿)+cos2(𝜈) cos2(𝛿)

)︁ ,
The two expressions on the right hand side are equal. This implies sin(𝛿′) = sin(𝛿*). Since the

angles were in the same quadrant we have 𝛿′ = 𝛿*.

We can now come back to the study of ⟨∇𝐹 (𝑥),𝑣⟩
⟨∇𝑓(�̃�),𝑣⟩ . By (3.6.13) we have

⟨∇𝐹 (𝑥), 𝑣⟩
⟨∇𝑓(�̃�), 𝑣⟩

=
‖∇𝐹 (𝑥)‖
‖∇𝑓(�̃�)‖

‖𝑣‖
‖𝑣‖
⟨ ∇𝐹 (𝑥)
‖∇𝐹 (𝑥)‖ ,

𝑤
‖𝑤‖⟩

⟨ ∇𝑓(�̃�)
‖∇𝑓(�̃�)‖ ,

�̃�
‖�̃�‖⟩

√︀
sin2(𝛿) + cos2(𝛿) cos2(𝜈)√︁
sin2(𝛿) + cos2(𝛿) cos2(𝜈)

We now operate the last two fractions. Using (3.6.10) and (3.6.13) we get that the product of

the last two fractions above is equal to

√︃
1 +𝐾ℓ̃2

(1 +𝐾ℓ̃2 sin2(𝛿*))(1 +𝐾ℓ̃2 cos2(𝛽))

√︂
sin2(𝛿) 1+𝐾ℓ̃2

(1+𝐾ℓ̃2 sin2(𝛿))
+ cos2(𝜈) cos2(𝛿)

1+𝐾ℓ̃2 sin(𝛿)

sin2(𝛿) + cos2(𝛿) cos2(𝜈)

which after using (3.6.15), and simplifying it yields
√︂

1+𝐾ℓ̃2

(1+𝐾ℓ̃2 sin2(𝛿))(1+𝐾ℓ̃2 cos2(𝛽))
(recall 𝛿* = 𝛿′).

So finally we have

⟨∇𝐹 (𝑥), 𝑣⟩
⟨∇𝑓(�̃�), 𝑣⟩

=
‖∇𝐹 (𝑥)‖
‖∇𝑓(�̃�)‖

‖𝑣‖
‖𝑣‖

√︃
1 +𝐾ℓ̃2

(1 +𝐾ℓ̃2 sin2(𝛿))(1 +𝐾ℓ̃2 cos2(𝛽))
.

In order to bound the previous expression, we now use Lemma 3.2.1.c) and Lemma 3.2.1.a), and

bound sin2(𝛿) and cos2(𝛽) by 0 or 1 depending on the inequality. Recall that, by (3.6.2) we

have 1/
√︀
1 +𝐾ℓ̃2 = C𝐾(ℓ), for ℓ = 𝑑(𝑥, 𝑥0) ≤ 𝑅. And ℓ̃ = ‖�̃�‖. Let’s proceed. We obtain, for

𝐾 = −1

cosh−3(𝑅) ≤ 1

cosh2(ℓ)
· 1 · 1

cosh(ℓ)
≤ ⟨∇𝐹 (𝑥), 𝑣⟩
⟨∇𝑓(�̃�), 𝑣⟩

≤ 1

cosh(ℓ)
· cosh2(ℓ) · cosh(ℓ) ≤ cosh2(𝑅).
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and for 𝐾 = 1 it is

cos2(𝑅) ≤ 1

cos(ℓ)
· cos2(ℓ) · cos(ℓ) ≤ ⟨∇𝐹 (𝑥), 𝑣⟩

⟨∇𝑓(�̃�), 𝑣⟩
≤ 1

cos2(ℓ)
· 1 · 1

cos(ℓ)
≤ cos−3(𝑅).

The first part of Lemma 3.2.2 follows, for 𝛾p = cosh−3(𝑅) and 𝛾n = cosh−2(𝑅) when 𝐾 = −1,
and 𝛾p = cos2(𝑅) and 𝛾n = cos3(𝑅) when 𝐾 = 1.

The second part of Lemma 3.2.2 follows readily from the first one and g-convexity of 𝐹 , as

in the following. It holds

𝑓(�̃�) +
1

𝛾n
⟨∇𝑓(�̃�), 𝑦 − �̃�⟩

1
≤ 𝐹 (𝑥) + ⟨∇𝐹 (𝑥), 𝑦 − 𝑥⟩

2
≤ 𝐹 (𝑦) = 𝑓(𝑦),

and

𝑓(�̃�) + 𝛾p⟨∇𝑓(�̃�), 𝑦 − �̃�⟩
3
≤ 𝐹 (𝑥) + ⟨∇𝐹 (𝑥), 𝑦 − 𝑥⟩

4
≤ 𝐹 (𝑦) = 𝑓(𝑦),

where 1 and 3 hold if ⟨∇𝑓(�̃�), 𝑦 − �̃�⟩ ≤ 0 and ⟨∇𝑓(�̃�), 𝑦 − �̃�⟩ ≥ 0, respectively, by the first

part of this theorem. Inequalities 2 and 4 hold by g-convexity of 𝐹 .

3.7 Constants depending on 𝑅 and 𝐾

We discuss the value of the constants of our algorithms in Remark 3.7.2 and discuss recent

hardness results in Remark 3.7.3. But we start by proving a relevant result that says that the

condition number of an 𝐿-smooth and 𝜇-strongly g-convex function 𝐹 : ℬ𝑅 → R is lower bounded

by a term depending on 𝑅 and 𝐾, where the condition number is defined by 𝐿/𝜇. This is unlike

in the Euclidean case, for which there are functions with condition number 1.

In particular, we show that the function 𝑥 ↦→ 1
2𝑑(𝑥, 𝑥0)

2 has minimum condition number on

ℬ𝑅, and is (𝑅
√︀
|𝐾| cot𝐾(𝑅))− sign(𝐾), where cot𝐾(𝑅) is the special cotangent that is cot(

√︀
|𝐾|𝑅)

if 𝐾 > 0 and coth(
√︀
|𝐾|𝑅) if 𝐾 < 0. And sign(𝐾) is 𝐾/|𝐾| for 𝐾 ̸= 0. The fact about the

condition number of 1
2𝑑(𝑥, 𝑥0)

2 can be obtained from the proof of Fact 3.3.4, and actually the

fact per se as a comparison geometry theorem that uses that the inequality there is satisfied with

equality in the constant curvature case. However, we recover the computation of this condition

number while proving the proposition.

Proposition 3.7.1. Let 𝐹 : ℳ𝐾 → R be an 𝐿-smooth and 𝜇-strongly convex function on

ℬ𝑅 ⊂ ℳ𝐾 . Assume 𝐹 is twice differentiable with continuous Hessian. Then, the condition

number 𝐿/𝜇 of 𝐹 on ℬ𝑅 is at least the condition number of the function 1
2𝑑(𝑥, 𝑥0)

2 on ℬ𝑅.

Proof As we have done before, we can assume 𝐾 ∈ {1,−1} because the other cases can be

reduced to this one by a rescaling, cf. Remark 3.6.1. Recall that by definition of ℳ𝐾 and ℬ𝑅,

for 𝐾 > 0, we have that 𝑅 < 𝜋/2
√
𝐾.

We start by noting that given 𝐹 , we can obtain another function 𝐺 whose condition number

is at most the one of 𝐹 and such that it is symmetric with respect to every rotation whose axis
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goes through 𝑥0. Formally, 𝐺 = 𝐺∘Exp𝑥0 ∘ 𝜎∘Exp
−1
𝑥0 for a rotation 𝜎 ∈ SO(𝑛). Equivalently, the

function 𝐺(𝑥) depends on ‖Exp−1
𝑥0 (𝑥)‖ only. Indeed, an average of 𝐹 and itself after performing

an arbitrary rotation 𝜎, that is (𝐹 + 𝐹 ∘ Exp𝑥0 ∘ 𝜎 ∘ Exp
−1
𝑥0 )/2, has a condition number that is

at most the condition number of 𝐹 . This is due to the Hessian being linear and its maximum

and minimum eigenvalues over the domain determining the condition number. That is, the

smoothness constant can only decrease or stay the same after performing the average. It would

only be the same if, at some point, the Hessian matrices of each of the two added functions both

have the same eigenvector with maximum eigenvalue and it equals the smoothness constant.

The argument for the minimum is analogous. This argument extends to the case in which

we integrate the function, pointwise, over SO(𝑛) after applying a rotation. That is, defining

𝑔(𝑥) =
∫︀
𝑆𝑂(𝑛) 𝐹 ∘Exp𝑥0 ∘ 𝜎∘Exp

−1
𝑥0 (𝑥)𝑑𝜎 we obtain a symmetric function with condition number

that is at most the condition number of 𝐹 . So without loss of generality we can solely study

symmetric functions 𝐺 and in fact, due to the symmetries we do not lose generality if we work

in dimension 𝑛 = 2.

Denote 𝑦𝑥 = ‖Exp−1
𝑥0 (𝑥)‖ ∈ R. We will express the condition number of 𝐺 by using the

function 𝑔 : R → R, defined as 𝑔(𝑦𝑥) = 𝐺(𝑥) for any point 𝑥 ∈ ℳ𝐾 . Note the function is well

defined by the symmetry property on 𝐺. A basis formed by (two) eigenvectors of ∇2𝐺(𝑥) can be

chosen to have vectors in the direction of Exp−1
𝑥 (𝑥0) and its normal. Indeed, either every vector is

an eigenvector associated to the same eigenvalue, which satisfies the above, or by the symmetry

of ∇2𝐺(𝑥), there exists a base {𝑣1, 𝑣2} of orthonormal eigenvectors, associated with different

eigenvalues 𝜆1 > 𝜆2. By the symmetry of 𝐺 we have that 𝜆1 = 𝑣⊤1 ∇2𝐺(𝑥)𝑣1 = 𝑣′⊤1 ∇2𝐺(𝑥)𝑣′1,

where 𝑣′1 is the symmetric vector to 𝑣1 with respect to Exp−1
𝑥 (𝑥0). However, since 𝜆1 ̸= 𝜆2 then

the only unit vectors 𝑣 that can satisfy 𝜆1 = 𝑣⊤∇2𝐺(𝑥)𝑣 are ±𝑣1, so 𝑣1 = 𝑣′1 and therefore 𝑣1 and

𝑣2 can be taken to be in the direction of Exp−1
𝑥 (𝑥0) and its normal. Consequently, one eigenvalue

of ∇2𝐺(𝑥) is 𝑔′′(𝑦𝑥). We can compute the other eigenvalue by using the non-Euclidean cosine

theorem, cf. Fact 3.6.5. In order to do this, first note that ∇𝐺(𝑥) must be in the direction

of Exp−1
𝑥 (𝑥0) by the symmetry of 𝐺 and it must be ‖∇𝐺(𝑥)‖ = 𝑔′(𝑦𝑥). Now given 𝑥 ∈ ℳ

and small enough 𝜂 ∈ R, we consider a right geodesic triangle with vertices 𝑥0, 𝑥 and 𝑧𝜂, where

𝑧𝜂 = Exp𝑥(𝜂𝑣2) for 𝑣2 defined above. Recall it is a unit vector that is normal to Exp−1
𝑥 (𝑥0) and it

is an eigenvector of ∇2𝐺(𝑥). The definition of 𝑧𝜂 implies that the angle between Exp−1
𝑥 (𝑥0) and

Exp−1
𝑥 (𝑥2) is 𝜋/2 and 𝑑(𝑥, 𝑧𝜂) = 𝜂. Let 𝛼(𝜂) be the angle between Exp−1

𝑧𝜂 (𝑥0) and Exp−1
𝑧𝜂 (𝑥).

Since we are only interested about the eigenvalue of ∇2𝐺(𝑥) associated to the eigenvector 𝑣2
we can project ∇𝐺(𝑧𝜂) onto Exp−1

𝑧𝜂 (𝑥), which has norm ‖∇𝐺(𝑧𝜂) cos(𝛼(𝜂))‖. We compute the
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eigenvalue as

lim
𝜂→0

‖∇𝐺(𝑧𝜂)‖ cos(𝛼(𝜂))
𝜂

= ‖∇𝐺(𝑥)‖ lim
𝜂→0

cos(𝛼(𝜂))

𝜂

1
= 𝑔′(𝑦𝑥) lim

𝜂→0

C𝐾(𝑑(𝑥0, 𝑥))− C𝐾(𝜂) C𝐾(𝑑(𝑥0, 𝑧𝜂))

𝐾 S𝐾(𝑑(𝑥0, 𝑧𝜂))𝜂 S𝐾(𝜂)

2
= 𝑔′(𝑦𝑥) lim

𝜂→0

C𝐾(𝑑(𝑥0, 𝑥))(1− C2
𝐾(𝜂))/𝐾

S𝐾(𝑑(𝑥0, 𝑧𝜂))𝜂 S𝐾(𝜂)

3
= 𝑔′(𝑦𝑥) cot𝐾(𝑑(𝑥0, 𝑥)) = 𝑔′(𝑦𝑥) cot𝐾(𝑦𝑥).

Above, 1 uses the cosine theorem, cf. Fact 3.6.5, applied as

C𝐾(𝑑(𝑥0, 𝑥)) = C𝐾(𝑑(𝑥, 𝑧𝜂)) C𝐾(𝑑(𝑥0, 𝑧𝜂)) +𝐾 cos(𝛼(𝜂)) S𝐾(𝑑(𝑥0, 𝑧𝜂)) S𝐾(𝑑(𝑥, 𝑧𝜂)).

Recall that we have 𝜂 = 𝑑(𝑥, 𝑧𝜂) by definition. Equality 2 uses the cosine theorem again, with

a different ordering of the sides so we obtain

C𝐾(𝑑(𝑥0, 𝑧𝜂)) = C𝐾(𝑑(𝑥0, 𝑥)) C𝐾(𝑑(𝑥, 𝑧𝜂)),

by using the right angle of the geodesic triangle. Finally 3 simplifies some terms, since (1 −
C2
𝐾(𝜂))/𝐾 = S2𝐾(𝜂) and uses that 𝑑(𝑥0, 𝑧𝜂) and S𝐾(𝜂)/𝜂 tend to 𝑑(𝑥0, 𝑥) and 1, respectively,

when 𝜂 → 0. We conclude that the condition number of 𝐺 is

𝜅𝐺 =
max𝑦∈[0,𝑅]{𝑔′′(𝑦), 𝑔′(𝑦) cot𝐾(𝑦)}
min𝑦∈[0,𝑅]{𝑔′′(𝑦), 𝑔′(𝑦) cot𝐾(𝑦)}

. (3.7.1)

We only need to prove that for any twice differentiable function 𝑔 : [0, 𝑅] → R with continuous

second derivative, the quotient above is at least the value of the quotient that we obtain for

𝑔(𝑦) = 𝑦2/2, which is (𝑅 cot𝐾(𝑅))−𝐾 . This is computed by noticing that, for that choice of 𝑔,

we have that 𝑔′′(𝑦) = 1, that if 𝐾 = 1 then 𝑔′(𝑦) cot𝐾(𝑦) ≤ 1 and it reaches its minimum at

𝑦 = 𝑅. If 𝐾 = −1 then 𝑔′(𝑦) cot𝐾(𝑦) ≥ 1 and it is maximum at 𝑦 = 𝑅. Note this implies that

the condition number of 1
2𝑑(𝑥0, 𝑥)

2 on ℬ𝑅 is (𝑅 cot𝐾(𝑅))−𝐾 , as it was advanced before.

Given 𝑔, let 𝑎, 𝑏 be tight constants such that 𝑔′′(𝑦) ∈ [𝑎, 𝑏] for 𝑦 ∈ [0, 𝑅]. Such constants

must exist since 𝑔′′ is a continuous function defined on a compact. We have 𝑔′(𝑦) ≤ 𝑏𝑦, since by

the symmetry and differentiability of 𝐺 it must be 𝑔′(0) = 0. We obtain a lower bound on 𝜅𝐺

if we lower bound the numerator of (3.7.1) by max𝑦∈[0,𝑅]{𝑔′′(𝑦)} = 𝑏 and if we upper bound the

denominator by 𝑔′(𝑅) cot𝐾(𝑅). We obtain

𝜅𝐺 ≥
𝑏

𝑔′(𝑅) cot𝐾(𝑅)
≥ 𝑏

𝑅𝑏 cot𝐾(𝑅)
=

1

𝑅 cot𝐾(𝑅)
.

Similarly, if we lower bound the denominator of (3.7.1) by 𝑎𝑅 cot𝐾(𝑅) ≤ max𝑦∈[0,𝑅]{𝑔′(𝑦) cot𝐾(𝑦)}
and upper bound the denominator by 𝑎 = min𝑦∈[0,𝑅]{𝑔′′(𝑦)} we obtain

𝜅𝐺 ≥
𝑎𝑅 cot𝐾(𝑅)

𝑎
= 𝑅 cot𝐾(𝑅).
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For each case 𝐾 ∈ {1,−1}, there is only one of the lower bounds above such that its right hand

side is greater than 1 and it precisely matches the value of the condition number of 1
2𝑑(𝑥0, 𝑥)

2

we computed above.

Remark 3.7.2. The previous proposition intuitively suggests that it could be unavoidable to

have some particular constants depending on 𝑅 in the rates of any optimization algorithm. For

starters, optimizing a g-convex function by adding a strongly g-convex regularizer and optimiz-

ing the resulting strongly g-convex problem would entail rates containing a factor depending on

the condition number of the regularizer, which the proposition proves it is at least the value

(𝑅
√︀
|𝐾| cot𝐾(𝑅))− sign(𝐾). This implies that in the case of positive curvature 𝐾 = 1, a 𝜇-

strongly g-convex and 𝐿-smooth function defined on the ball ℬ𝑅 must have condition number that

is at least tan(𝑅)/𝑅 ∈ [ 2
𝜋 cos(𝑅) ,

1
cos(𝑅) ]. This grows fast with 𝑅, but it is only natural if one

takes into account that no strongly g-convex function exists if 𝑅 ≥ 𝜋
2 , due to the space containing

a full geodesic circle (so the constant function is the only g-convex function in this domain).

Optimization in manifolds of positive curvature only makes sense in spaces of low diameter.

The classical domain of application of accelerated methods for strongly convex functions con-

sists of functions with large condition number 𝜅, due to the
√
𝜅-dependence of the rates. For

𝐾 = 1, the constants of our algorithm 1/𝛾p = cos−2(𝑅) and 1/𝛾n = cos−3(𝑅) (we also have the

constant
√︀
44max{1, 𝑅2} coming from �̃�) might seem large but they are a small polynomial of

the minimum attainable condition number. If the condition number is large or, in its limit to in-

finity, whenever the function is g-convex, then acceleration is beneficial. For the case 𝐾 = −1 the

previous proposition shows that the minimum condition number is 𝑅 tanh(𝑅). In this case, our

constants are 1/𝛾p = cosh3(𝑅) and 1/𝛾n = cosh2(𝑅), and a constant of a similar nature coming

from �̃� (cf, Proof of Lemma 3.2.3), which do not present an analogous dependency with respect to

the minimum attainable condition number as in the previous case. This exponential dependence

could be due to the exponential volume that a ball contains in the hyperbolic space. Studying

if these constants are necessary for a global full accelerated method is interesting open problem

and future direction of research. Regardless, the essence of our results for 𝜇-strongly g-convex

functions is that we can optimize at a full accelerated rate globally as opposed to essentially fully

accelerating in a small neighborhood of radius 𝑂((𝜇/𝐿)3/4) around the minimizer (this is explicit

in (Zhang and Sra, 2018) and implicit in (Ahn and Sra, 2020) since the rates of AGD are nearly

achieved only after a number of steps that is what RGD needs to reach the neighborhood). Note

that, additionally, we can achieve acceleration in the g-convex case, which was not possible before.

In any case, we note that in machine learning applications, it has been observed that the iterates

do not get far from initialization (Nagarajan and Kolter, 2019), especially in overparametrized

models. Consequently, in such regime, 𝑅 being a small constant is not a strong assumption and

the constants of our algorithms do not become significant.

In the sequel, we discuss the work of Hamilton and Moitra (2021), that shows a hardness result

in this direction. Our intuition is that, due to the geometry, it is necessary to have an additive
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and/or multiplicative constant depending on 𝑅 on the optimal rates of convergence, similarly

to the multiplicative constant 𝑅 that one has in the lower bound for the class of smooth and

convex functions in the Euclidean space. And for easy strongly g-convex functions (low condition

number), this hardness could dominate convergence. However, when the condition number is

large, which is the traditional regime of application of accelerated methods, or in its limit to

infinity, that is in the case of g-convexity, acceleration becomes again a very useful tool.

3.7.1 Comment on hardness results

Remark 3.7.3. After this work was publicly available, the work (Hamilton and Moitra, 2021) was

released. In the noisy setting, in the hyperbolic plane, the authors claim “[to have] dashed these

hopes [of having Nesterov-like accelerated algorithms] by showing that acceleration is impossible

even in the simplest of settings where we want to minimize a smooth and strongly geodesically

convex function over the hyperbolic plane”. We argue that is not the case.

They essentially argue that, in their setting with a noisy oracle in the hyperbolic plane, one

needs & 𝑅/ log(𝑅) noisy queries to the gradient or function value for optimizing functions of

the form 𝑑(𝑥, 𝑥*)2, while their condition numbers are 𝐿/𝜇 ≈ 𝑅 so obtaining rates .
√︀
𝐿/𝜇 is

impossible in general. But it does not preclude to have an algorithm with rates that are, for

instance, . 𝑅 +
√︀
𝐿/𝜇 log(1/𝜀). Or a similar expression that involves some other additive or

multiplicative constants depending on 𝑅. In fact, we believe that they are able to show that

“acceleration is impossible even in the simplest of settings” precisely because they study the

simplest of settings! That is, they show there is some hardness depending on the geometry. In

particular, when the condition number is low this hardness can dominate the convergence. For

instance, for rates 𝑅+
√︀
𝐿/𝜇 log(1/𝜀) the 𝑅 can dominate convergence unless 𝐿/𝜇 ≥ 𝑅2 or 𝜀 is

small enough. The result does not mean that acceleration is doomed to fail. In fact, the problems

for which acceleration gets the most improvement are ill-conditioned problems and for those one

would expect to still have acceleration in their noisy setting. In particular, acceleration is of

importance when 𝐿/𝜇 is large or in the limit to infinity, that is, when the function is g-convex.

We note that Hamilton and Moitra (2021) independently proved a similar result as our Propo-

sition 3.7.1, limited to the hyperbolic plane. In particular they show that the condition number for

an 𝐿-smooth 𝜇-strongly g-convex function 𝐹 defined on the hyperbolic disk of curvature 𝐾 = −1
must be 𝜅𝐹 = 𝐿/𝜇 ≥ Ω(𝑅), which is similar to the precise result that we found that had optimal

constant 𝑅 cot(𝑅).

In conclusion, we have:

• A lower bound ̃︀Ω(𝑅) on the number of oracle queries needed for minimization, under certain

assumptions.

• If the condition number is small, say it is about the smallest value it can take, 𝐿𝜇 = ̃︀Θ(𝑅),

then obtaining complexity
√︁

𝐿
𝜇 is not possible.
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• The lower bound does not preclude acceleration when 𝐿
𝜇 is larger, say for instance 𝐿

𝜇 ≥ 𝑅
2.

In fact, one of the results of this chapter shows that indeed we can get
√︁

𝐿
𝜇 log(1𝜀 ) up to

constants depending on 𝑅 and 𝐾 and up to log factors.

• Despite of our constants, we obtain the same rates as AGD up to log factors when 𝑅 = 𝑂(1).

This is not an unrealistic assumption, since it has been observed that in several machine

learning applications, iterates do not get far from initialization (Nagarajan and Kolter,

2019), especially in overparametrized models.
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Chapter 4

Proportional Fairness under Positive
Linear Constraints

The proportional fair resource allocation problem is a major problem studied in flow control of

networks, operations research, and economic theory, where it has found numerous applications.

This problem, defined as the constrained maximization of
∑︀

𝑖 log 𝑥𝑖, is known as the packing

proportional fairness problem when the feasible set is defined by positive linear constraints and

𝑥 ∈ R𝑛
≥0. In this chapter, we present a distributed accelerated first-order method for this problem

which improves upon previous approaches. The algorithm is width-independent.

4.1 Introduction

The assignment of bounded resources to several agents under some notions of fairness is

a topic studied in networking, operations research, game theory, and economic theory. The

allocation obtained by the maximization of the function
∑︀𝑛

𝑖=1 log(𝑥𝑖) over a convex set 𝐶 ⊆ R𝑛
≥0,

known as a proportional fair allocation, is an important solution that arises under a natural set

of fairness axioms. These axioms are: Pareto optimality, affine invariance, independence of

irrelevant alternatives (if the fair allocation of a feasible set is in a particular subset, the fair

allocation of that subset is the same), and symmetry (labels or order of agents should not

matter) (Bertsimas, Farias, and Trichakis, 2011; Lan et al., 2010). It corresponds to Nash

bargaining solutions (Nash, 1950) and it also has applications to multi-resource allocation in

compute clusters (Bonald and Roberts, 2015; Jin and Hayashi, 2018; Joe-Wong et al., 2012),

rate control in networks (Kelly, 1997) and game theory (Jain and Vazirani, 2010; Jain and

Vazirani, 2007). For example, in the field of rate control in networks, one can be interested

about allocating

Other important allocations are linear objectives (no fairness), the max-min allocations (Mo

and Walrand, 2000), or 𝛼-fair allocations (Atkinson, 1970; Mo and Walrand, 2000; McCormick

et al., 2014), which generalize all of the others. Proportional fairness corresponds to 𝛼 = 1. A

natural restriction, that many of these applications require, are positive linear constraints. This

results in the packing proportional fairness problem, also known as the 1-fair packing problem.
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The main focus of this chapter is on solving this problem. Given 𝐴 ∈ℳ𝑚×𝑛(R≥0) in the set of

𝑚× 𝑛 matrices with non-negative entries, the 1-fair packing problem is defined1 as

max
𝑥∈R𝑛≥0

{︃
𝑓(𝑥)

def
=

𝑛∑︁
𝑖=1

log 𝑥𝑖 : 𝐴𝑥 ≤ 1𝑚

}︃
. (1FP)

We use the notation 1𝑑 for the 𝑑-dimensional vector of ones. We focus on width-independent

algorithms that additively 𝜀-approximate the optimum of those problems. That means, respec-

tively, that we can find ̂︀𝑥 in time that depends at most polylogarithmically on the width 𝜌 of the

matrix 𝐴, and that it satisfies 𝑓*−𝑓(̂︀𝑥) ≤ 𝜀, where 𝑓* is the optimal value. Note that (1FP) has a

unique optimizer, by strong concavity. The width 𝜌 of 𝐴 is defined as max{𝐴𝑖𝑗}/min𝐴𝑖𝑗 ̸=0{𝐴𝑖𝑗},
the maximum ratio of the non-zero entries of 𝐴. Note that in general width-dependent algo-

rithms are not polynomial. Smoothness and Lipschitz constants of the objectives do not scale

polylogarithmically with 𝜌 and thus, direct application of classical first-order methods leads to

non-polynomial algorithms. We note that all of the parameters on our algorithm use the known

quantities 𝜀, 𝑚 and 𝑛, an in particular convergence rates depend on these values only.

Example 4.1.1. Suppose we have a network represented by a weighted graph with 𝑚 edges and

suppose we have 𝑛 source-target pairs. The weights of the graph correspond to capacities, like

information that can be transmitted between two nodes in Internet protocols. Assume for sim-

plicity that there is a single path connecting each source to its respective target. The resource

allocation problem consists of assigning a flow to each source-target path such that the sum of the

flows at each edge does not exceed the capacity of the edge. In such a case, the feasible set can be

written, after a rescaling, as {𝑥 ∈ R𝑛
≥0 : 𝐴𝑥 ≤ 1𝑚}, where 𝐴𝑖𝑗 ≥ 0. Allocation maximizing the

total flow can lead to unfair solutions in which some pairs could even receive no flow. The only

allocation satisfying the aforementioned fairness axioms is the solution to the problem we study

in this chapter.

Most works dealing with 𝛼-fair functions assume, without loss of generality, that 𝐴 is given

so that the minimum non-zero entry of 𝐴 is 1 and the maximum entry is 𝜌. However, we assume

without loss of generality that

max
𝑗∈[𝑚]
{𝐴𝑖𝑗} = 1, for all 𝑖 ∈ [𝑛]. (4.1.1)

We can do so because, for our problem, we can rescale each primal coordinate multiplicatively,

rescaling the columns of 𝐴 accordingly, which only changes the objectives by an additive constant.

Thus, the additive guarantees we will obtain are also satisfied in the non-scaled problem.
1Consider 𝑓(𝑥) = −∞ if 𝑥 is not feasible and the fact that 𝑓 tends fast to −∞ when any coordinate tends

to 0. In such a case, the geometry of this problem is such that the graph of the function could be considered
to be an isolated hill or mountain with steep or precipitous sides, that is, a butte. For this reason, we consider
our algorithm is Eyeing the Butte of Proportional Fairness, or, as a short name in a non-rhotic accent, it is
Ibuprofen. We hope that, in the context of proportional fairness with positive linear constraints, our algorithm
receives a widespread adoption as successful as that of the original Ibuprofen.
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Our algorithm solves the problem in a distributed model of computation with 𝑛 agents. Each

agent 𝑗 ∈ [𝑛] controls variable 𝑥𝑗 and only has access to global parameters like 𝑚,𝑛, or the

target accuracy 𝜀, to the 𝑗-th column of 𝐴, and in each round it receives the slack (𝐴𝑥)𝑖−1 of all

the constraints 𝑖 in which 𝑗 participates. This is a standard distributed model of computation.

We refer to (Kelly and Yudovina, 2014; Awerbuch and Khandekar, 2008) for its motivation and

applications.

Notations

We let 𝑒𝑖 be the vector with 1 in coordinate 𝑖 and 0 elsewhere. We denote by 𝐴𝑖 a row of 𝐴.

Recall that for 𝑘 ∈ N, we use the notation [𝑘]
def
= {1, 2, . . . , 𝑘}. Throughout this chapter, log(·)

represents the natural logarithm. For 𝑣 ∈ R𝑛, the notation exp (𝑣) means entrywise exponential.

We use ⊙ for the entrywise product. Given a 1-strongly convex map 𝜓, we denote its Bregman

divergence by 𝐷𝜓(𝑥, 𝑦)
def
= ∇𝜓(𝑥) − ∇𝜓(𝑦) − ⟨∇𝜓(𝑦), 𝑥 − 𝑦⟩. We denote by 𝑁 the number of

non-zero entries of the matrix 𝐴. The notation ̃︀𝑂(·) hides logarithmic factors with respect to 𝑚,

𝑛, 1/𝜀 and 𝜌. But note that the rates of our algorithms do not depend on 𝜌.

Related Work

Despite the importance and widespread applicability of fairness objectives, width-independent

(and thus polynomial) algorithms for many 𝛼-fair packing problems were not developed until re-

cently. Width-independent algorithms were first designed for 0-fair packing, i.e., for packing

linear programs (packing LPs), that have a longer history (Luby and Nisan, 1993). For this

problem there are currently nearly linear-time width-independent iterative algorithms (Allen-Zhu

and Orecchia, 2019) and distributed algorithms (Allen-Zhu and Orecchia, 2015; Diakonikolas and

Orecchia, 2017). These works focus obtaining solutions whose rates have a small dependence on

the input, motivated by the high dimensional case, at the expense of having polynomial depen-

dence on 1
𝜀 . This is as opposed to interior point methods, that can achieve high accuracy but

with worse dependence on the input. Likewise, we focus on obtaining solutions whose rates have

with low dependence on the input. Marašević, Stein, and Zussman (2016) studied the width-

independent optimization of 𝛼-fair packing problems for any 𝛼 ∈ [0,∞] with a stateless algorithm

and Diakonikolas, Fazel, and Orecchia (2020) gave better rates with a non-stateless algorithm.

Both works use the same distributed framework as ours. For the particular case of 1-fair packing,

the latter work obtains an unaccelerated algorithm that runs in ̃︀𝑂(𝑛2/𝜀2) distributed iterations.

Beck, Nedic, et al. (2014) study the optimization of the dual problem by using Nesterov’s ac-

celerated method, and then they reconstruct a primal solution. However, both primal and dual

solutions depend on the smoothness constant of the dual problem, which in the worst case is

proportional to 𝜌2, and therefore it is not a polynomial algorithm. In contrast, our algorithms

do not depend on 𝜌 at all. Obtaining a priori lower bounds on each of the coordinates of the

optimizer is of theoretical and practical interest, since it provides certain amount of resource that

can be assigned to each agent before solving the problem. These were studied in (Marašević,
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Table 4.1: Comparison of algorithms for 1-fair packing. The work of one iteration is linear in
𝑁 , the number of non-zero entries in 𝐴.

Work Problem Iterations Width-dependence?

Beck, Nedic, et al. (2014) Primal 𝑂(𝜌2𝑚𝑛/𝜀) Yes
Marašević, Stein, and Zussman (2016) Primal ̃︀𝑂(𝑛5/𝜀5) nearly No (polylog)
Diakonikolas, Fazel, and Orecchia (2020) Primal ̃︀𝑂(𝑛2/𝜀2) nearly No (polylog)
Our Theorem 4.2.5 Primal ̃︀𝑂(𝑛/𝜀) No

Beck, Nedic, et al. (2014) Dual 𝑂(𝜌
√︀
𝑚𝑛/𝜀) Yes

Criado, Martínez-Rubio, and Pokutta (2021) Dual ̃︀𝑂(𝑛2/𝜀) No

Stein, and Zussman, 2016) and were improved by Allybokus et al. (2018). In Lemma 4.3.1, we

show a lower bound of this kind for our problem when it is normalized as in (4.1.1).

Contribution and Main Results

Our contribution can be summarized as follows; See Table 4.1 for a comparison with previous

works. We design a distributed accelerated algorithm for 1-fair packing by using an accelerated

technique that uses truncated gradients of a regularized objective, similarly to (Allen-Zhu and

Orecchia, 2019) for packing LP. However, in contrast, our algorithm and its guarantees are

deterministic. Also, our algorithm makes use of a different regularization and an analysis that

yields additive error guarantees as opposed to multiplicative ones. Our algorithm is width-

independent.

4.2 A distributed accelerated algorithm for 1-Fair Packing

Allen-Zhu and Orecchia (2019) designed a packing LP algorithm (0-fair packing) that is an

accelerated coordinate descent method applied to a smoothed objective and that runs in ̃︀𝑂(𝑁/𝜀)

total expected work in order to approximate a solution with a multiplicative error. The main

techniques are the application of linear coupling (Allen-Zhu and Orecchia, 2017) to non-standard

instances of mirror descent and gradient descent. In particular, the mirror descent method is

run with a truncated stochastic gradient and the descent method uses a particular smoothness

property that their problem satisfies. In this section, we apply similar techniques in order to

obtain a deterministic accelerated descent method applied to a smoothed objective coming from

the 1-fair packing problem, that approximates the objective additively. The analysis follows the

philosophy of mixing an online learning algorithm with a descent method, that was explained

in Section 2.5. We note that Diakonikolas, Fazel, and Orecchia (2020) also made use of this

smoothing and truncated gradients for the 1-fair packing problem, but their algorithm does not

achieve acceleration and their analysis is more similar to the one of gradient descent.

We reparametrize Problem (1FP) so that the objective function is linear at the expense

of making the constraints more complex. That is, we define the function 𝑓 : R𝑛 → R, 𝑥 ↦→
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Figure 4.1: Regularized objective 𝑓𝑟 (left) and its gradient (right), for a sample matrix 𝐴 ∈ℳ3×2.
For visualization purposes we show log(𝑓𝑟(𝑥)) and log(‖∇𝑓𝑟(𝑥)‖), represented by color, and we
indicate the direction of the gradient with normalized arrows. Also, note that we show the results
in the original space (i.e., before reparametrizing, so the constraints appear to be linear) but the
gradient was computed as originally defined in (4.2.2) (i.e., after reparametrizing).

𝑓(exp (𝑥)) = ⟨1𝑛, 𝑥⟩. The optimization problem becomes

max
𝑥∈R𝑛

{︁
𝑓(𝑥)

def
= ⟨1𝑛, 𝑥⟩ : 𝐴 exp (𝑥) ≤ 1𝑚

}︁
. (4.2.1)

Then, we regularize the negative of the reparametrized objective by adding a fast-growing barrier:

𝑓𝑟(𝑥)
def
= −⟨1𝑛, 𝑥⟩+

𝛽

1 + 𝛽

𝑚∑︁
𝑖=1

(𝐴 exp (𝑥))
1+𝛽
𝛽

𝑖 ,

with gradient at coordinate 𝑗 ∈ [𝑚] given by

∇𝑗𝑓𝑟(𝑥) = −1 +
𝑛∑︁
𝑖=1

(𝐴 exp (𝑥))
1
𝛽

𝑖 𝑎𝑖𝑗 exp (𝑥𝑗) , (4.2.2)

where 𝛽 def
= 𝜀

6𝑛 log(2𝑚𝑛2/𝜀)
. In this way, we can work with an unconstrained minimization problem.

The resulting function is not globally smooth but when the absolute value of a coordinate of the

gradient is large, it is positive, and in that case we are able to take a small gradient descent step

and decrease the function considerably. The intuition is that if the gradient is large, then the

function value along the segment of the gradient step, as a function of the step, can decrease fast.

But it cannot increase fast since there are no large negative gradient coordinates. We depict 𝑓𝑟 in

Figure 4.1. The barrier also allows to maintain almost feasibility, as we show in Proposition 4.2.1

below. It is chosen to grow fast enough so that a point satisfying (𝐴 exp (𝑥))𝑖 > 1+𝜀/𝑛, for some

𝑖 ∈ [𝑛], will have an optimality gap that is greater than the required accuracy. On the other

hand, the regularizer is very small in the feasible region that is not too close to the boundary.

Let 𝑥* be the maximizer of 𝑓 , let �̄�* def
= exp (𝑥*) be the solution to Problem (1FP), and let 𝑥*𝑟

be the minimizer of 𝑓𝑟. We have 𝑥* ∈ [− log(𝑛), 0]𝑛 by Lemma 4.3.1. Let 𝜔 def
= log(𝑚𝑛/(1−𝜀/𝑛))

and define the box 𝐵 def
= [−𝜔, 0]𝑛. We restrict ourselves to this domain and formulate our final
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problem, that we will minimize with an accelerated method:

min
𝑥∈𝐵

𝑓𝑟(𝑥). (1FP-primalReg)

Note 𝑓𝑟(𝑥) ≥ 0 if 𝑥 ∈ 𝐵. We add the redundant and simple box constraints 𝐵 in order to later

guarantee a bound on the regret of the mirror descent method that runs within the algorithm.

We show that it suffices to obtain an 𝜀-minimizer of Problem (1FP-primalReg) in order to obtain

an 𝑂(𝜀)-minimizer for the original Problem (1FP).

Proposition 4.2.1. Let 𝜀 ∈ (0, 𝑛/2]. Let 𝑥*𝑟 be the minimizer of (1FP-primalReg), let 𝑥* be the

maximizer of 𝑓 and let 𝑥𝜀𝑟 ∈ 𝐵 be a point such that 𝑓𝑟(𝑥𝜀𝑟)− 𝑓𝑟(𝑥*𝑟) ≤ 𝜀, i.e., an 𝜀-minimizer of

(1FP-primalReg). Then we have:

1) 𝑓(𝑥*)− 𝑓(𝑥*𝑟) ≤ 𝑓(𝑥*) + 𝑓𝑟(𝑥
*
𝑟) ≤ 3𝜀.

2) The point 𝑥𝜀𝑟 satisfies 𝐴 exp (𝑥𝜀𝑟) ≤ 1 + 𝜀/𝑛.

3) The point 𝑢 = 𝑥𝜀𝑟 − log(1 + 𝜀/𝑛)1𝑛 satisfies 𝑓(exp (𝑥*))− 𝑓(exp (𝑢)) = 𝑓(𝑥*)− 𝑓(𝑢) ≤ 5𝜀

and 𝐴 exp (𝑢) ≤ 1𝑚.

Proof Recall 𝛽 = 𝜀
6𝑛 log(2𝑚𝑛2/𝜀)

and that log(·) is the natural logarithm. For the first part, take

the point 𝑥 = log(1 − 𝜀/𝑛)1𝑛 + 𝑥* ∈ 𝐵. It satisfies 𝐴 exp (𝑥) ≤ (1 − 𝜀/𝑛)1𝑚, because 𝑥* is

feasible. Thus

𝛽

1 + 𝛽

𝑚∑︁
𝑖=1

(𝐴 exp (𝑥))
1+𝛽
𝛽

𝑖 ≤ 𝑚(1− 𝜀/𝑛)1/𝛽 ≤ 𝑚
(︁ 𝜀

2𝑚𝑛2

)︁6
≤ 𝜀. (4.2.3)

We used 𝛽
1+𝛽 ≤ 1, 1+𝛽

𝛽 ≥
1
𝛽 , and (1− 𝜀/𝑛)

𝑛
𝜀 ≤ 𝑒−1. Consequently, we have

𝑓(𝑥*)− 𝑓(𝑥*𝑟)
1
≤ 𝑓(𝑥*) + 𝑓𝑟(𝑥

*
𝑟)

2
≤ 𝑓(𝑥*) + 𝑓𝑟(𝑥)

= ⟨1𝑛, 𝑥*⟩+

(︃
−⟨1𝑛, log(1− 𝜀/𝑛)1𝑛 + 𝑥*⟩+ 𝛽

1 + 𝛽

𝑚∑︁
𝑖=1

(𝐴 exp (𝑥))
1+𝛽
𝛽

𝑖

)︃
3
≤ 𝑛 log(

1

1− 𝜀/𝑛
) + 𝜀

4
≤ 3𝜀.

(4.2.4)

Above, 1 is true by definition of 𝑓𝑟 being −𝑓 plus a non-negative regularizer. The point 𝑥 is in 𝐵

and 𝑥*𝑟 = argmin𝑥∈𝐵{𝑓𝑟(𝑥)} so we have 2 . Inequality 3 uses (4.2.3) and 4 uses log(𝑥) ≤ 𝑥−1

and 𝜀/𝑛 ≤ 1/2.

For the second part, suppose for the moment that there is some 𝑖 such that (𝐴 exp (𝑥𝜀𝑟))𝑖 >

1 + 𝜀/𝑛. In that case

(𝐴 exp (𝑥𝜀𝑟))
1+𝛽
𝛽

𝑖 ≥ (1 + 𝜀/𝑛)(2𝑛/𝜀)·3 log(2𝑚𝑛
2/𝜀) ≥

(︂
2𝑚𝑛2

𝜀

)︂3

,
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since (1+𝜀/𝑛)2𝑛/𝜀 ≥ 𝑒 when 𝜀/𝑛 ≤ 1/2. We have 𝑥𝜀𝑟 ∈ 𝐵 so 𝑓𝑟(𝑥𝜀𝑟) ≥ −⟨1𝑛, 𝑥𝜀𝑟⟩+
𝛽

1+𝛽

(︁
2𝑚𝑛2

𝜀

)︁3
≥

𝛽
2

(︁
2𝑚𝑛2

𝜀

)︁3
. On the other hand, it holds for the point 𝑦 = − log(𝑚𝑛)1𝑛 that

𝑓𝑟(𝑦) = 𝑛 log(𝑚𝑛) +
𝛽

1 + 𝛽

𝑚∑︁
𝑖=1

(𝐴 exp (𝑦))
1+𝛽
𝛽

𝑖

1
≤ 𝑛 log(𝑚𝑛) +𝑚 (1/𝑚)

1+𝛽
𝛽 ≤ 𝑛 log(𝑚𝑛) + 1

2
<

𝛽

2

(︂
2𝑚𝑛2

𝜀

)︂3

− 𝜀 < 𝑓𝑟(𝑥
𝜀
𝑟)− 𝜀,

(4.2.5)

contradicting the assumption 𝑓𝑟(𝑥
𝜀
𝑟) − 𝑓𝑟(𝑥

*
𝑟) ≤ 𝜀, as we would obtain 𝜀 < 𝑓𝑟(𝑥

𝜀
𝑟) − 𝑓𝑟(𝑦) ≤

𝑓𝑟(𝑥
𝜀
𝑟)− 𝑓𝑟(𝑥*𝑟), since 𝑦 ∈ 𝐵. So it must be (𝐴 exp (𝑥𝜀𝑟))𝑖 ≤ 1+ 𝜀/𝑛. Inequality 1 uses that the

maximum entry of 𝐴 is 1, and 𝛽
1+𝛽 ≤ 1. One can show 2 by proving the stronger inequality that

results from substituting 𝛽 by 𝜀/(6𝑛 · 2𝑚𝑛2/𝜀), which is a lower value. Computing derivatives

in both sides shows that this inequality holds if it does for 𝑚 = 1 and 𝜀 = 𝑛
2 , and the latter is

easy to check.

For the third part, we have 𝐴 exp (𝑢) = 𝐴 exp(𝑥𝜀𝑟)
1+𝜀/𝑛 ≤ 1𝑚. And finally, putting all together we

obtain

𝑓(𝑥*)− 𝑓(𝑢) = 𝑓(𝑥*)− 𝑓(𝑥𝜀𝑟) + 𝑛 log(1 + 𝜀/𝑛) ≤ 𝑓(𝑥*) + 𝑓𝑟(𝑥
𝜀
𝑟) + 𝑛 log(1 + 𝜀/𝑛)

≤ 𝑓(𝑥*) + 𝑓𝑟(𝑥
*
𝑟) + 𝜀+ 𝑛 log(1 + 𝜀/𝑛) ≤ 4𝜀+ 𝑛 log(1 + 𝜀/𝑛) ≤ 5𝜀.

Algorithm 7 Accelerated descent method for 1-Fair Packing
Input: Matrix 𝐴 ∈ℳ𝑚×𝑛(R≥0) normalized as in (4.1.1). Accuracy 𝜀 ∈ (0, 𝑛/2].
1: 𝛽 ← 𝜀

6𝑛 log(2𝑚𝑛2/𝜀)
; 𝜔 ← log( 𝑚𝑛

1−𝜀/𝑛); 𝐿 = max
{︁

4𝜔(1+𝛽)
𝛽 , 16𝑛 log(2𝑚𝑛)

3𝜀 + 1
3

}︁
= ̃︀𝑂(𝑛/𝜀)

2: 𝜂0 ← 1
3𝐿 ; 𝐶𝑘 = 3𝜂𝑘𝐿; 𝜏 ← 𝜏𝑘 = 𝜂𝑘/𝐶𝑘 = 1/3𝐿.

3: 𝑇 ← ⌈log(4𝑛 log(2𝑚𝑛)
𝜀 )/ log( 1

1−𝜏 )⌉ ≤ ⌈3𝐿 log(4𝑛 log(2𝑚𝑛)
𝜀 )⌉ = ̃︀𝑂(𝑛/𝜀)

4: 𝑥(0) ← 𝑦(0) ← 𝑧(0) ← − log(𝑚𝑛/(1− 𝜀/𝑛))1𝑛
5: for 𝑘 = 1 to 𝑇 do
6: 𝜂𝑘 ← 𝐶𝑘 − 𝐶𝑘−1 =

1
1−𝜏 𝜂𝑘−1

7: 𝑥(𝑘) ← 𝜏𝑧(𝑘−1) + (1− 𝜏)𝑦(𝑘−1)

8: 𝑧(𝑘) ← argmin𝑧∈𝐵
{︀

1
2𝜔‖𝑧 − 𝑧

(𝑘−1)‖22 + ⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑧⟩
}︀

◇ Mirror descent step
9: 𝑦(𝑘) ← 𝑥(𝑘) + 1

𝜂𝑘𝐿
(𝑧(𝑘) − 𝑧(𝑘−1)) ◇ Gradient descent step

10: end for
11: return ̂︀𝑥 def

= exp
(︀
𝑦(𝑇 )

)︀
/(1 + 𝜀/𝑛)

Output: 𝑓(̂︀𝑥) − 𝑓(�̄�*) ≤ 𝜀 and ̂︀𝑥 is feasible, i.e., 𝐴̂︀𝑥 ≤ 1. The total number of iterations is̃︀𝑂(𝑛/𝜀) to obtain an 𝑂(𝜀)-approximate solution.

In the sequel, we will present the different parts of Algorithm 7 and their analyses. In

particular, the notation and definitions used are compatible with the choices in the algorithm

and most of the parameter choices naturally occur throughout the arguments. Our optimization

algorithm starts at the points 𝑥(0) = 𝑦(0) = 𝑧(0) = − log(𝑚𝑛/(1 − 𝜀/𝑛))1𝑛 and updates each of
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these variables 𝑥(𝑘), 𝑦(𝑘) and 𝑧(𝑘) once in each iteration. They remain in 𝐵, cf. Lemma 4.3.2.

The role of the three variables is the following: 𝑧(𝑘) will be a mirror point and 𝑦(𝑘) will be a

gradient descent point, in the sense that in order to compute them we apply mirror descent and

gradient descent. Then, the point 𝑥(𝑘) will be a convex combination of both, that will balance

the regret of 𝑧(𝑘) with the primal progress of 𝑦(𝑘), effectively coupling these two algorithms.

It is important to note that we do not use the gradient ∇𝑓𝑟(𝑥) for our mirror descent loss.

Instead, we use a truncation of the gradient, similarly to (Diakonikolas, Fazel, and Orecchia,

2020). More precisely, the loss we perform the mirror descent step on is the truncated gradient

∇𝑓𝑟(𝑥(𝑘)) ∈ R𝑛 defined as

∇𝑖𝑓𝑟(𝑥(𝑘))
def
= min{1,∇𝑖𝑓𝑟(𝑥(𝑘))} for all 𝑖 ∈ [𝑛]. (4.2.6)

Note that ∇𝑓𝑟(𝑥(𝑘)) ∈ [−1, 1]𝑛 because ∇𝑓𝑟(𝑥) ∈ [−1,∞]𝑛 for any 𝑥 ∈ R𝑛, as the regularizer

has positive gradient; see also definition of 𝑓𝑟(𝑥) and its gradient. The truncation allows mirror

descent to control one part of the regret, which will not depend on the global Lipschitz constant.

Gradient descent will compensate for both such regret and the part that is not controlled by

mirror descent.

Let Π𝒳 (·) be the ‖ · ‖2-projection map of a point onto a convex set 𝒳 . The mirror descent

update can be written in closed form as any of the two following equivalent ways

𝑧(𝑘) ← Π𝐵(𝑧
(𝑘−1) − 𝜔𝜂𝑘∇𝑓𝑟(𝑥(𝑘))),

𝑧
(𝑘)
𝑖 ← Π[−𝜔,0](𝑧

(𝑘−1)
𝑖 − 𝜔𝜂𝑘∇𝑖𝑓𝑟(𝑥(𝑘))), for all 𝑖 ∈ [𝑛].

(4.2.7)

That is, projecting back to the box, in case of the ‖·‖2, consists of simply clipping each coordinate.

We bound the regret coming from this mirror descent step by making use of a slight variation of

the classical mirror descent lemma.

Lemma 4.2.2 (Mirror Descent Guarantee). Let 𝑢 ∈ 𝐵 and choose 𝐿 as in Algorithm 7. It

holds that:

⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑧(𝑘−1) − 𝑢⟩ ≤ 𝜂2𝑘𝐿⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩+
1

2𝜔
‖𝑧(𝑘−1) − 𝑢‖22 −

1

2𝜔
‖𝑧(𝑘) − 𝑢‖22.

Proof Use Lemma 4.3.4.b) with loss ℓ(𝑘) = ∇𝑓𝑟(𝑥(𝑘)), learning rate 𝜂 = 𝜂𝑘, and regularizer

𝜓(𝑥) = 1
2𝜔‖𝑥‖

2
2, that yields Bregman divergence 𝐷𝜓(𝑥, 𝑦) =

1
2𝜔‖𝑥−𝑦‖

2
2. Use that 𝑧(𝑘−1)−𝑧(𝑘) =

𝜂𝑘𝐿(𝑥
(𝑘) − 𝑦(𝑘)).

Next, we will analyze the role of the gradient descent step. For this, we will use the following

lemma, that can be derived from a lemma in (Diakonikolas, Fazel, and Orecchia, 2020). The

details of the proof of the latter lemma were not provided, so for the sake of completeness, we

include it as Lemma 4.3.3 and provide a full proof in Section 4.3.

105



Lemma 4.2.3 (Descent Lemma). Given 𝑥(𝑘) and 𝑦(𝑘) as defined in Algorithm 7, the following

holds:

𝑓𝑟(𝑥
(𝑘))− 𝑓𝑟(𝑦(𝑘)) ≥

1

2
⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩ ≥ 0.

Proof We have 𝑥(𝑘)−𝑦(𝑘) = (𝑧(𝑘−1)−𝑧(𝑘))/𝜂𝑘𝐿 by definition of the gradient descent step. With

this, we first conclude that 1
2⟨∇𝑓𝑟(𝑥

(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩ ≥ 0, as ∇𝑖𝑓𝑟(𝑥(𝑘)) and 𝑥
(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 have the

same sign for all 𝑖 ∈ [𝑛], cf. (4.2.7).

We apply Lemma 4.3.3 with 𝑦(𝑘) corresponding to 𝑥 + Δ and 𝑥(𝑘) corresponding to 𝑥. To

this end, we choose each 𝑐𝑖 satisfying 1 below

𝑐𝑖𝛽

4(1 + 𝛽)
|∇𝑖𝑓𝑟(𝑥(𝑘))|

1
= |𝑥(𝑘)𝑖 − 𝑦

(𝑘)
𝑖 |

2
=

1

𝜂𝑘𝐿
|𝑧(𝑘−1)
𝑖 − 𝑧(𝑘)𝑖 |

3
≤ 𝜔

𝐿
|∇𝑖𝑓𝑟(𝑥(𝑘))|,

where 2 holds by definition of 𝑦(𝑘) and 3 holds by the mirror descent update (4.2.7). Thus,

it suffices to pick 𝑐𝑖 such that 𝑐𝑖 ≤ 4𝜔(1+𝛽)
𝛽𝐿 ≤ 1, where the last inequality holds true by the

definition of 𝐿. In fact, the value of 𝐿 was chosen to satisfy the previous inequality. Hence,

Lemma 4.3.3 can be applied. We obtain:

𝑓𝑟(𝑥
(𝑘))− 𝑓𝑟(𝑦(𝑘)) ≥

𝑛∑︁
𝑖=1

(︁
1− 𝑐𝑖

2

)︁
∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦

(𝑘)
𝑖 ) ≥ 1

2
⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩.

as desired.

4.2.1 Coupling Mirror Descent and Gradient Descent

We first prove a lemma that shows we can compensate for the regret coming from mirror

descent as well as the rest of the regret.

Lemma 4.2.4. Let 𝐶𝑘
def
= 3𝜂𝑘𝐿, and let 𝜈(𝑘) def

= ∇𝑓𝑟(𝑥(𝑘))−∇𝑓𝑟(𝑥(𝑘)) ∈ [0,∞)𝑛. For all 𝑢 ∈ 𝐵,

we have

⟨𝜂𝑘𝜈(𝑘), 𝑧(𝑘−1) − 𝑢⟩+ 𝜂𝑘
2𝐿⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩ ≤ 𝐶𝑘(𝑓𝑟(𝑥(𝑘))− 𝑓𝑟(𝑦(𝑘))).

Proof It is enough to show that for all 𝑖 ∈ [𝑛] we have

𝜂𝑘𝜈
(𝑘)
𝑖 (𝑧

(𝑘−1)
𝑖 − 𝑢𝑖) + 𝜂𝑘

2𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 ) ≤ 3

2
𝜂𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ) (4.2.8)

because then we can conclude with

⟨𝜂𝑘𝜈(𝑘), 𝑧(𝑘−1) − 𝑢⟩+ 𝜂𝑘
2𝐿⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩

1
≤ 3

2
𝜂𝑘𝐿⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩

2
≤ 3𝜂𝑘𝐿(𝑓𝑟(𝑥

(𝑘))− 𝑓𝑟(𝑦(𝑘))),

(4.2.9)

by adding up (4.2.8) in 1 and Lemma 4.2.3 in 2 . In the analysis of (4.2.8) we exploit the

simple but crucial fact that is that the gradient step for each coordinate is independent of the

gradient step of other coordinates, due to the constraint set being a box. The rest of the analysis
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is analogous to Lemma 3.10 in (Allen-Zhu and Orecchia, 2019). We present the proof in three

cases. In the cases below, we will use ∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 ) ≥ 0, cf. Lemma 4.2.3. And also the

fact that 𝜂𝑘 ≤ 1/4, as we observe in (4.2.13).

• If 𝜈(𝑘)𝑖 = 0 then ∇𝑖𝑓𝑟(𝑥(𝑘)) = ∇𝑖𝑓𝑟(𝑥(𝑘)) ∈ [−1, 1]. In such a case, we have

𝜂𝑘𝜈
(𝑘)
𝑖 (𝑧

(𝑘−1)
𝑖 − 𝑢𝑖) + 𝜂𝑘

2𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 ) = 𝜂𝑘

2𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 )

≤ 3

2
𝜂𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ).

• If 𝜈(𝑘)𝑖 > 0 and 𝑧
(𝑘)
𝑖 > −𝜔 then the mirror descent step did not need to project along

coordinate 𝑖, and we have 𝑧(𝑘)𝑖 = 𝑧
(𝑘−1)
𝑖 − 𝜔𝜂𝑘, and thus 𝑦(𝑘)𝑖 = 𝑥

(𝑘)
𝑖 − 𝜔/𝐿. In this case

𝜂𝑘𝜈
(𝑘)
𝑖 (𝑧

(𝑘−1)
𝑖 − 𝑢𝑖) + 𝜂𝑘

2𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 )

1
≤ 𝜂𝑘∇𝑖𝑓𝑟(𝑥(𝑘))𝜔 + 𝜂𝑘

2𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑖) − 𝑦(𝑖))

= 𝜂𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥
(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ) + 𝜂𝑘

2𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 )

≤ 3

2
𝜂𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ).

Above, we obtain 1 from 𝑧
(𝑘)
𝑖 −𝑢𝑖 ≤ 𝜔 because 𝑧(𝑘), 𝑢 ∈ 𝐵, the fact that 𝜈(𝑘)𝑖 and 𝑥(𝑘)𝑖 −𝑦

(𝑘)
𝑖

are positive, and 1 = ∇𝑖𝑓𝑟(𝑥(𝑘)) ≤ ∇𝑖𝑓𝑟(𝑥(𝑘)), 0 < 𝜈
(𝑘)
𝑖 ≤ ∇𝑖𝑓𝑟(𝑥(𝑘)).

• If 𝜈(𝑘)𝑖 > 0 and 𝑧(𝑘)𝑖 = −𝜔 then

𝜂𝑘𝜈
(𝑘)
𝑖 (𝑧

(𝑘−1)
𝑖 − 𝑢𝑖) + 𝜂𝑘

2𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 )

1
≤ 𝜂𝑘∇𝑖𝑓𝑟(𝑥(𝑘))(𝑧

(𝑘−1)
𝑖 − 𝑧(𝑘)𝑖 ) + 𝜂𝑘

2𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 )

2
≤ 𝜂𝑘

2𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 ) + 𝜂𝑘

2𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 )

≤ 3

2
𝜂𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ).

We have 1 because in this case, 𝑢𝑖 − 𝑧(𝑘)𝑖 , 𝑥(𝑘)𝑖 − 𝑦
(𝑘)
𝑖 , 𝜈(𝑘)𝑖 , ∇𝑖𝑓𝑟(𝑥(𝑘)) are all ≥ 0. We also

used 0 < 𝜈
(𝑘)
𝑖 < ∇𝑖𝑓𝑟(𝑥(𝑘)), 0 < ∇𝑖𝑓𝑟(𝑥(𝑘)) < ∇𝑖𝑓𝑟(𝑥(𝑘)). In 2 , we used 𝑧

(𝑘−1)
𝑖 − 𝑧

(𝑘)
𝑖 =

𝜂𝑘𝐿(𝑥
(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ).

With these tools at hand, we can now use a linear coupling argument to establish an accel-

erated convergence rate. Note that the algorithm is as simple as performing the mirror descent,

gradient descent and coupling, after a careful choice of parameters. All of which depend on

known quantities.

Theorem 4.2.5. Let 𝜀 ≤ 𝑛/2 and let �̄�* be the solution to (1FP) and let 𝑥*𝑟 be the minimizer

of (1FP-primalReg). Algorithm 7 computes a point 𝑦(𝑇 ) ∈ 𝐵 such that 𝑓𝑟(𝑦(𝑇 )) − 𝑓𝑟(𝑥*𝑟) ≤ 𝜀

in a number of iterations 𝑇 = ̃︀𝑂(𝑛/𝜀). Besides, ̂︀𝑥 def
= exp

(︀
𝑦(𝑇 )

)︀
/(1 + 𝜀/𝑛) is a feasible point of

(1FP), i.e., 𝐴̂︀𝑥 ≤ 1𝑚, such that 𝑓(�̄�*)− 𝑓(̂︀𝑥) ≤ 5𝜀 = 𝑂(𝜀).
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Proof We start by bounding the gap with respect to 𝑥(𝑘):

𝜂𝑘(𝑓𝑟(𝑥
(𝑘))− 𝑓𝑟(𝑢))

1
≤ ⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑢⟩

= ⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑧(𝑘−1)⟩+ ⟨𝜂𝑘𝜈(𝑘), 𝑧(𝑘−1) − 𝑢⟩+ ⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑧(𝑘−1) − 𝑢⟩
2
=

(1− 𝜏)𝜂𝑘
𝜏

⟨∇𝑓𝑟(𝑥(𝑘)), 𝑦(𝑘−1) − 𝑥(𝑘))⟩+ ⟨𝜂𝑘𝜈(𝑘), 𝑧(𝑘−1) − 𝑢⟩+ ⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑧(𝑘−1) − 𝑢⟩

3
≤

(1− 𝜏)𝜂𝑘
𝜏

(𝑓𝑟(𝑦
(𝑘−1))− 𝑓𝑟(𝑥(𝑘))) + ⟨𝜂𝑘𝜈(𝑘), 𝑧(𝑘−1) − 𝑢⟩+ ⟨𝜂𝑘2𝐿∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩

+
1

2𝜔
‖𝑧(𝑘−1) − 𝑢‖22 −

1

2𝜔
‖𝑧(𝑘) − 𝑢‖22]

4
≤

(1− 𝜏)𝜂𝑘
𝜏

(𝑓𝑟(𝑦
(𝑘−1))− 𝑓𝑟(𝑥(𝑘))) + 𝐶𝑘(𝑓𝑟(𝑥

(𝑘))− 𝑓𝑟(𝑦(𝑘)) +
1

2𝜔
‖𝑧(𝑘−1) − 𝑢‖22

− 1

2𝜔
‖𝑧(𝑘) − 𝑢‖22

5
≤ 𝜂𝑘𝑓𝑟(𝑥

(𝑘)) + (𝐶𝑘 − 𝜂𝑘)𝑓𝑟(𝑦(𝑘−1))− 𝐶𝑘𝑓𝑟(𝑦(𝑘)) +
1

2𝜔
‖𝑧(𝑘−1) − 𝑢‖22 −

1

2𝜔
‖𝑧(𝑘) − 𝑢‖22 (4.2.10)

We used convexity in 1 . The definition of 𝑥(𝑘) is used in 2 . Inequality 3 uses convexity and

Lemma 4.2.2. We applied Lemma 4.2.4 in 4 . In 5 , we substituted the value of 𝜏 , which is

picked to be 𝜏 def
= 𝜂𝑘/𝐶𝑘 =

1
3𝐿 so we can cancel 𝑓𝑟(𝑥(𝑘)) in both sides of (4.2.10).

The choice of 𝜂𝑘 is made so that 𝐶𝑘 − 𝜂𝑘 = 𝐶𝑘−1 (or equiv. (3𝐿 − 1)𝜂𝑘 = 3𝐿𝜂𝑘−1), which

allows to telescope the previous expression. Adding up (4.2.10) for 𝑘 = 1, . . . , 𝑇 with 𝑢 = 𝑥*𝑟 , we

have (︃
−𝐶0 −

𝑇∑︁
𝑘=1

𝜂𝑘

)︃
𝑓𝑟(𝑥

*
𝑟) ≤ 𝐶0(𝑓𝑟(𝑦

(0))− 𝑓𝑟(𝑥*𝑟))− 𝐶𝑇 𝑓𝑟(𝑦(𝑇 )) +
1

2𝜔
‖𝑧(0) − 𝑥*𝑟‖22.

We dropped − 1
2𝜔‖𝑧

(𝑇 ) − 𝑥*𝑟‖22 ≤ 0. Now, since 𝜂𝑘 = 𝐶𝑘 −𝐶𝑘−1 we have −𝐶0 −
∑︀𝑇

𝑘=1 𝜂𝑘 = −𝐶𝑇 .

So reorganizing terms we obtain

𝑓𝑟(𝑦
(𝑇 )) ≤ 𝑓𝑟(𝑥*𝑟) +

1

𝐶𝑇

(︂
𝐶0(𝑓𝑟(𝑦

(0))− 𝑓𝑟(𝑥*𝑟)) +
1

2𝜔
‖𝑧(0) − 𝑥*𝑟‖22

)︂
1
≤ 𝑓𝑟(𝑥

*
𝑟) +

1

𝐶𝑇

(︂
𝐶0(𝑛(log(2𝑚𝑛) + 1) +

𝑛 log(𝑚𝑛)

2

)︂
2
≤ 𝑓𝑟(𝑥

*
𝑟) + 𝜀

(4.2.11)

Above, 1 uses 𝑓𝑟(𝑦(0)) ≤ 𝑛 log(𝑚𝑛/(1 − 𝜀/𝑛)) + 𝜀 ≤ 𝑛(log(2𝑚𝑛) + 1) and −𝑓𝑟(𝑥*𝑟) ≤ 0. For

the former, take into account that − log(𝑚𝑛)1𝑛 is feasible and so the regularizer at 𝑦(0) =

− log(𝑚𝑛/(1 − 𝜀/𝑛))1𝑛 is at most 𝜀, cf. (4.2.3). Recall 𝜀 < 𝑛/2. We also bounded the last

summand by using that 𝑧(0), 𝑥*𝑟 ∈ 𝐵 so ‖𝑧(0) − 𝑥*𝑟‖22 ≤ 𝑛𝜔2.

At this point, the only free parameters left are 𝐶0 (via 𝜂0) and 𝑇 . We set 𝜂0 = 1
3𝐿 so that
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𝐶0 = 1. And we have that 𝐶𝑇 = 3𝐿𝜂𝑇 = 3𝐿𝜂0(1− 𝜏)−𝑇 = (1− 𝜏)−𝑇 . So if we pick 𝑇 such that

1

𝐶𝑇
= (1− 𝜏)𝑇 ≤ 𝜀

4𝑛 log(2𝑚𝑛)
, (4.2.12)

we will obtain 2 . We will pick the smallest 𝑇 that satisfies (4.2.12). That is,

𝑇 =

⌈︂
log(4𝑛 log(2𝑚𝑛)/𝜀)

log(1/(1− 𝜏))

⌉︂
≤
⌈︂
3𝐿 log

(︂
4𝑛 log(2𝑚𝑛)

𝜀

)︂⌉︂
= ̃︀𝑂(𝑛/𝜀).

On the other hand, by definition of 𝑇 as the minimum natural number satisfying (4.2.12), we

have,

(1− 𝜏)𝑇 =
𝜂0
𝜂𝑇
≥ 𝜀

4𝑛 log(2𝑚𝑛)
(1− 𝜏).

We can use this inequality to show 𝜂𝑘 ≤
1
4 , for all 𝑘 ∈ [𝑇 ], which is used in the proof of

Lemma 4.2.4. It is enough that 1 below is satisfied:

𝜂𝑘 ≤ 𝜂𝑇 ≤
4𝑛 log(2𝑚𝑛)𝜂0

𝜀

1

1− 𝜏
=

4𝑛 log(2𝑚𝑛)

3𝐿𝜀

3𝐿

3𝐿− 1

1
≤ 1

4
. (4.2.13)

If 𝐿 ≥ 16𝑛 log(2𝑚𝑛)
3𝜀 + 1

3 then 1 holds, and we chose 𝐿 to satisfy this inequality.

We note we could increase 𝑇 by a factor 𝐶 > 1 inside of its log in the numerator, so that the

error obtained in 2 is 𝜀/𝐶. However, the requirement on 𝐿 above would increase by a factor

of 𝐶, so we would end up with an extra factor of 𝐶 in the value of 𝑇 . Also, the reduction

caused by the smoothing already incurs in an 𝜀 additive error, cf. Proposition 4.2.1. Part 1

of Proposition 4.2.1 could use 𝑥 = log(1 − 𝜀
𝑛𝐶 )1𝑛 + 𝑥* so that inequality (4.2.4) ends up being

bounded by 𝑂(𝜀/𝐶), but that would require to have 𝛽 be 𝐶 times smaller for (4.2.3) to work.

This would also require to make 𝐿 larger by a factor of 𝐶 so we would also end up having the 𝐶

in the total number of iterations to obtain an 𝑂(𝜀)-optimizer.

In conclusion, we obtain an 𝜀 minimizer of 𝑓𝑟 in ̃︀𝑂(𝑛/𝜀) iterations and by Proposition 4.2.1,

we get that ̂︀𝑥 is a feasible point that is a 5𝜀 optimizer of Problem (1FP). Finally, we note that

each iteration of the algorithm can be implemented in 𝑂(𝑁) operations, that are distributed,

where the bottleneck is the computation of the gradient. From the definition of the gradient, it

is clear that it can be computed in our distributed model of computation and that each agent

only needs their local variables for the rest of steps of the algorithm.

4.3 Other proofs

Lemma 4.3.1. Let 𝐴 satisfy the normalization in (4.1.1), and let �̄�* be the optimizer of Prob-

lem (1FP). Then �̄�*𝑖 ≥ 1/𝑛, for all 𝑖 ∈ [𝑛].

Proof The normalization ensures that 𝑒𝑖 are feasible points, for 𝑖 ∈ [𝑛]. That is, 𝐴𝑒𝑖 ≤ 1 because

each 𝐴𝑖𝑗 ≤ 1. Since �̄�* is the maximizer of Problem (1FP), by the first order optimality condition

we have ⟨∇𝑓(�̄�*), 𝑥 − �̄�*⟩ ≤ 0, for any feasible point 𝑥. Suppose there is a coordinate 𝑖 ∈ [𝑛]

such that �̄�*𝑖 <
1
𝑛 . Then, ⟨∇𝑓(�̄�*), 𝑒𝑖 − �̄�*⟩ = 1

�̄�*𝑖
−
∑︀𝑛

𝑗=1 �̄�
*
𝑗/�̄�

*
𝑗 > 0, which is a contradiction.
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Lemma 4.3.2. The iterates of Algorithm 7 remain in the box 𝐵.

Proof For all 𝑘 ≥ 0, we have 𝑧(𝑘) ∈ 𝐵 by definition. If we have that 𝑦(𝑘−1) ∈ 𝐵, then 𝑥(𝑘) ∈ 𝐵
since 𝑥(𝑘) is a convex combination of 𝑦(𝑘−1) and 𝑧(𝑘−1). So we only have to prove that for all

𝑘 ≥ 0, we have 𝑦(𝑘) ∈ 𝐵. We prove by induction that, for 𝑘 ≥ 1, it holds that 𝑦(𝑘) is a convex

combination of {𝑧(𝑖)}𝑘𝑖=0 and that the weight of 𝑧(𝑘) in this convex combination is 1
𝜂𝑘𝐿

. Firstly,

we have 𝑦(1) = (1 − 1
𝜂1𝐿

)𝑧(0) + 1
𝜂1𝐿

𝑧(1) (recall 𝑥(0) = 𝑧(0)). Now assuming our property holds

up to 𝑘 − 1, use the definition of 𝑦(𝑘) and 𝑥(𝑘), to compute 𝑦(𝑘) = 𝜏𝑧(𝑘−1) + (1 − 𝜏)𝑦(𝑘−1) +

1
𝜂𝑘𝐿

(𝑧(𝑘)−𝑧(𝑘−1)). This is an affine combination of the 𝑧(𝑖)’s, by induction hypothesis. Moreover,

the weights add up to 1 = 𝜏 +(1−𝜏)+ 1
𝜂𝑘𝐿
− 1

𝜂𝑘𝐿
, and the weight on 𝑧(𝑘) is 1

𝜂𝑘𝐿
. So we only have

to prove the weight on 𝑧(𝑘−1) is ≥ 0 in order to show that we indeed have a convex combination

and not just an affine one. By induction hypothesis, we know the weight on 𝑧(𝑘−1) coming from

𝑦(𝑘−1) is 1
𝜂𝑘−1𝐿

. Hence, the weight on 𝑧(𝑘−1) is 𝜏+(1−𝜏) 1
𝜂𝑘−1𝐿

− 1
𝜂𝑘𝐿

= 𝜏 > 0, where the equality

uses the definition of 𝜂𝑘.

Lemma 4.3.3 (Lemma 3.1 in (Diakonikolas, Fazel, and Orecchia, 2020)). Let 𝑐 ∈ [0, 1]𝑛

and let Δ ∈ R𝑛 be defined as Δ𝑗 = − 𝑐𝑗𝛽
4(1+𝛽)∇𝑗𝑓𝑟(𝑥), for 𝑗 ∈ [𝑛]. Then

𝑓𝑟(𝑥+Δ)− 𝑓𝑟(𝑥) ≤
𝑛∑︁
𝑗=1

(1− 𝑐𝑗
2
)Δ𝑗∇𝑗𝑓𝑟(𝑥).

Proof By using a Taylor expansion, there is a 𝑡 ∈ [0, 1] such that

𝑓𝑟(𝑥+Δ)− 𝑓𝑟(𝑥) = ⟨∇𝑓𝑟(𝑥),Δ⟩+
1

2
Δ⊤∇2𝑓𝑟(𝑥+ 𝑡Δ)Δ. (4.3.1)

The gradient and Hessian of 𝑓𝑟 are given by

∇𝑗𝑓𝑟(𝑥) = −1 +
𝑚∑︁
𝑖=1

(𝐴 exp (𝑥))
1
𝛽

𝑖 𝑎𝑖𝑗 exp (𝑥𝑗) ,

∇2
𝑗𝑘𝑓𝑟(𝑥) = 1{𝑗=𝑘}

𝑚∑︁
𝑖=1

(𝐴 exp (𝑥))
1
𝛽

𝑖 𝑎𝑖𝑗 exp (𝑥𝑗)

+
1

𝛽

𝑚∑︁
𝑖=1

(𝐴 exp (𝑥))
1
𝛽
−1

𝑖 𝑎𝑖𝑗 exp (𝑥𝑗) 𝑎𝑖𝑘 exp (𝑥𝑘)

(4.3.2)

In order to control how much the function changes, we will require ∇2
𝑗𝑘𝑓𝑟(𝑥+ 𝑡Δ) ≤ 2∇2

𝑗𝑘𝑓𝑟(𝑥).

We can guarantee this condition if we guarantee that each summand in the expression above

does not grow by more than a factor of 2. Let Δℓ = max𝑖∈[𝑛]{Δ𝑖}. If Δℓ < 0, then the condition

holds trivially, so we can assume Δℓ > 0. It suffices to have exp (Δ𝑙)
1
𝛽
+1 ≤ 2. In other words, it

suffices to have

Δℓ ≤
ln 2

1 + 1
𝛽

. (4.3.3)

In fact, we will use Δ𝑗 = − 𝑐𝑗
4 ·

𝛽
1+𝛽∇𝑗𝑓𝑟(𝑥) for all 𝑗 ∈ [𝑛], which satisfy the condition since 𝑐𝑗 ≤ 1
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and −∇𝑗𝑓𝑟(𝑥) ≤ 1. In such a case, we have

1

2
Δ⊤∇2𝑓𝑟(𝑥+ 𝑡Δ)Δ

1
≤

𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

(𝐴 exp (𝑥))
1
𝛽

𝑖 Δ
2
𝑗𝑎𝑖𝑗 exp (𝑥𝑗)

+
1

𝛽

𝑚∑︁
𝑖=1

(𝐴 exp (𝑥))
1
𝛽
−1

𝑖

⎛⎝ 𝑛∑︁
𝑗=1

Δ𝑗𝑎𝑖𝑗 exp (𝑥𝑗)

⎞⎠2

2
≤ 𝛽 + 1

𝛽

𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

(𝐴 exp (𝑥))
1
𝛽

𝑖 Δ
2
𝑗𝑎𝑖𝑗 exp (𝑥𝑗)

3
=

𝛽 + 1

𝛽

𝑛∑︁
𝑗=1

Δ2
𝑗 (∇𝑗𝑓𝑟(𝑥) + 1)

4
=

𝑛∑︁
𝑗=1

−𝑐𝑗
4
Δ𝑗∇𝑗𝑓𝑟(𝑥)(∇𝑗𝑓𝑟(𝑥) + 1)

5
≤ −

𝑛∑︁
𝑗=1

𝑐𝑗
2
Δ𝑗∇𝑗𝑓𝑟(𝑥)

(4.3.4)

We used the inequality ∇2
𝑗𝑘𝑓𝑟(𝑥+ 𝑡Δ) ≤ 2∇2

𝑗𝑘𝑓𝑟(𝑥) in 1 . We used Cauchy-Schwarz in 2 with

vectors (
√︀
𝑎𝑖1 exp (𝑥1), . . . ,

√︀
𝑎𝑖𝑛 exp (𝑥𝑛)) and (Δ𝑗

√︀
𝑎𝑖1 exp (𝑥1), . . . ,Δ𝑗

√︀
𝑎𝑖𝑛 exp (𝑥𝑛)) in order

to bound the last factor, so that the two first lines of the right hand side become proportional.

In 3 , we used the definition of the gradient. In 4 , we used the value of Δ. Finally, 5 is

a direct consequence of the truncated gradient definition (one can check the inequality for the

three cases in ∇𝑗𝑓𝑟(𝑥) ∈ {[−1, 0), [0, 1], (1,∞)}, while taking into account the sign of Δ𝑗). Now,

substituting into (4.3.1) we obtain:

𝑓𝑟(𝑥+Δ)− 𝑓𝑟(𝑥) ≤
𝑛∑︁
𝑗=1

(︁
1− 𝑐𝑗

2

)︁
Δ𝑗∇𝑗𝑓𝑟(𝑥).

Lemma 4.3.4 (Mirror Descent Lemma). Let 𝒳 ⊆ R𝑛 be a closed convex set and let 𝜓 : 𝒳 →
R be a 1-strongly convex map with respect to ‖·‖. Let ‖·‖* be the dual norm to ‖·‖ and let ℓ(𝑘) ∈ R𝑛

be an arbitrary loss vector. Given 𝑧(𝑘−1) ∈ 𝒳 , let 𝑧(𝑘) def
= argmin𝑧∈𝒳 {𝐷𝜓(𝑧, 𝑧

(𝑘−1)) + 𝜂⟨ℓ(𝑘), 𝑧⟩}.
Then, for all 𝑢 ∈ 𝒳 we have

a) 𝜂⟨ℓ(𝑘), 𝑧(𝑘−1) − 𝑢⟩ ≤ 𝜂2

2 ‖ℓ
(𝑘)‖2* +𝐷𝜓(𝑢, 𝑧

(𝑘−1))−𝐷𝜓(𝑢, 𝑧
(𝑘)).

b) 𝜂⟨ℓ(𝑘), 𝑧(𝑘−1) − 𝑢⟩ ≤ 𝜂2

2 ⟨ℓ
(𝑘), 𝑧(𝑘−1) − 𝑧(𝑘)⟩+𝐷𝜓(𝑢, 𝑧

(𝑘−1))−𝐷𝜓(𝑢, 𝑧
(𝑘)).

Proof This proof follows the classical proof of Mirror Descent that we showed in Section 2.2.2.

In fact part a) is the same and part b) is obtained by a simple modification of the bound.

111



We note that, by definition, we have 𝜕
𝜕𝑥𝐷𝜓(𝑥, 𝑦) = ∇𝜓(𝑥)−∇𝜓(𝑦). The lemma is due to

⟨𝜂ℓ(𝑘), 𝑧(𝑘−1) − 𝑢⟩ = ⟨𝜂ℓ(𝑘), 𝑧(𝑘−1) − 𝑧(𝑘)⟩+ ⟨𝜂ℓ(𝑘), 𝑧(𝑘) − 𝑢⟩
1
≤ ⟨𝜂ℓ(𝑘), 𝑧(𝑘−1) − 𝑧(𝑘)⟩ − ⟨∇𝜓(𝑧(𝑘))−∇𝜓(𝑧(𝑘−1)), 𝑧(𝑘) − 𝑢⟩
2
= ⟨𝜂ℓ(𝑘), 𝑧(𝑘−1) − 𝑧(𝑘)⟩ −𝐷𝜓(𝑧

(𝑘), 𝑧(𝑘−1)) +𝐷𝜓(𝑢, 𝑧
(𝑘−1))−𝐷𝜓(𝑢, 𝑧

(𝑘))

3
≤ 𝜂2

2
‖ℓ(𝑘)‖2* +𝐷𝜓(𝑢, 𝑧

(𝑘−1))−𝐷𝜓(𝑢, 𝑧
(𝑘)).

Inequality 1 comes from the first order condition of the definiton of 𝑧(𝑘), that is, ⟨∇𝜓(𝑧(𝑘)) −
∇𝜓(𝑧(𝑘−1))+𝜂ℓ(𝑘), 𝑢−𝑧(𝑘)⟩ ≥ 0 for all 𝑢 ∈ 𝒳 . 2 is the triangle equality of Bregman divergences,

and can be easily checked by using the definition. If we drop the term −𝐷𝜓(𝑧
(𝑘), 𝑧(𝑘−1)) after

2 , we obtain part 𝑏) of this lemma. 3 leads to part 𝑎), which is the classical mirror descent

lemma. It uses the bound 𝐷𝜓(𝑧
(𝑘), 𝑧(𝑘−1)) ≥ 1

2‖𝑧
(𝑘) − 𝑧(𝑘−1)‖2, which holds due to the strong

convexity of 𝜓. And then we applied the inequality ⟨𝑣, 𝑤⟩ − 1
2‖𝑤‖

2 ≤ 1
2‖𝑣‖

2
* for 𝑣, 𝑤 ∈ R𝑛, that

holds by Cauchy-Schwarz and ‖𝑣‖* · ‖𝑤‖ ≤ 1
2‖𝑣‖

2
* +

1
2‖𝑤‖

2.
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Chapter 5

Decentralized Cooperative Stochastic
Bandits

In this chapter, we study a decentralized cooperative stochastic multi-armed bandit problem

with𝐾 arms on a network of𝑁 agents. We study this problem under a model in which the reward

distribution of each arm is the same for each agent. Moreover, rewards are drawn independently

across agents and time steps, that is, there are no collisions or penalties if two agents pull from

the same arm at the same iteration. In each round, each agent chooses an arm to play and

subsequently sends a message to her neighbors. And the goal is to minimize the overall regret of

the entire network. We design a fully decentralized algorithm that uses an accelerated consensus

procedure to compute delayed estimates of the average of rewards obtained by all the agents for

each arm, and then it uses an upper confidence bound (UCB) algorithm that accounts for the

delay and error of the estimates. A regret analysis of our algorithm is provided. For Gaussian

rewards, the regret is bounded by the optimal regret of a centralized network plus a natural

and simple term depending on the spectral gap of the communication matrix. Our algorithm

is simpler to analyze than those proposed in prior work, achieves better regret bounds, and

performs better empirically.

5.1 Introduction

The multi-armed bandit (MAB) problem is one of the most widely studied problems in online

learning. In the most basic setting of this problem, an agent has to pull one among a finite set

of arms or actions, and she receives a reward that depends on the chosen action. This process is

repeated over a finite time-horizon and the goal is to get a cumulative reward as close as possible

to the reward she could have obtained by committing to the best fixed action, in hindsight. The

agent only observes the rewards corresponding to the actions she chooses, i.e., the bandit setting

as opposed to the full-information setting.

There are two main variants of the MAB problem—the stochastic and adversarial versions.

In this work, our focus is on the former, where each action yields a reward that is drawn from

a fixed unknown, but stationary, distribution. In the latter version, rewards may be chosen by

an adversary who may be aware of the strategy employed by the agent, but cannot predict the
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outcome of the random choices made by the agent. Optimal algorithms have been developed for

both the stochastic and the adversarial versions, cf. (Bubeck and Cesa-Bianchi, 2012). The MAB

problem epitomizes the exploration-exploitation tradeoff that appears in most online learning

settings: in order to maximize the cumulative reward, it is necessary to trade off between the

exploration of the hitherto under-explored arms and the exploitation of the seemingly best arm.

Variants of the MAB problem are used in a wide variety of applications ranging from online

advertising systems to clinical trials, queuing and scheduling.

In several applications, the “agent” solving the MAB problem may itself be a decentralized

system, as in (Gai, Krishnamachari, and Jain, 2010; Tekin and Liu, 2012; Tran-Thanh, Rogers,

and Jennings, 2012; Stranders et al., 2012; Buccapatnam, Eryilmaz, and Shroff, 2013; Anandku-

mar et al., 2011). The reason for using decentralized computation may be an inherent restriction

in some cases, e.g. if we want to solve MAB problems on systems that are already decentralized,

or it could be a choice made to improve the total running time—using 𝑁 units allows 𝑁 arms

to be pulled at each time step. When the agent is a distributed system, restrictions on commu-

nication in the system introduce additional tradeoffs between communication cost and regret.

Apart from the one considered in this work, there are several formulations of decentralized or

distributed MAB problems, some of which are discussed in the related work section below.

Problem Formulation: This work focuses on a decentralized stochastic MAB problem. We

consider a network consisting of 𝑁 agents that play the same MAB problem synchronously for

𝑇 rounds, and the goal is to obtain regret close to that incurred by an optimal centralized algo-

rithm running for 𝑁𝑇 rounds (𝑁𝑇 is the total number of arm pulls made by the decentralized

algorithm). At each time step, all agents simultaneously pull some arm and obtain a reward

drawn from the distribution corresponding to the pulled arm. The rewards are drawn indepen-

dently across agents and time steps. After the rewards have been received, the agents can send

messages to their neighbors.

Main Contributions: We solve the decentralized MAB problem using a gossip algorithm

(cf. Section 5.2). Our algorithm incurs regret equal to the optimal regret in the centralized

problem plus a term that depends on the spectral gap of the underlying communication graph

and the number of agents (see Theorem 5.4.2 for a precise statement). At the end of each round,

each agent sends 𝑂(𝐾) values to her neighbors. The amount of communication permitted can

be reduced at the expense of incurring greater regret by having some delay, captured by our

analysis. We assume the algorithm knows the total number of agents in the network 𝑁 and a

lower bound on the spectral gap of the communication matrix. We make these assumptions,

which are standard in the decentralized literature (Boyd et al., 2006; Scaman et al., 2017; Duchi,

Agarwal, and Wainwright, 2012; Dimakis et al., 2010), for clarity of exposition only, since 𝑁 can

be estimated and, for an important family of communication matrices that can be easily built

in a decentralized way and that depends on the Laplacian, the spectral gap can be estimated as

well (Franceschelli et al., 2013), which is enough for our purposes.
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The key contribution of this work is an algorithm for the decentralized setting that exhibits a

natural and simple dependence on the spectral gap of the communication matrix. In particular,

for this algorithm we have

• A regret bound, that is lower compared to other algorithms previously designed for the

same setting. This is achieved with the use delayed estimators of the relevant information

that is communicated in order to reduce their variance.

• Standard assumptions about the global information available can be implemented on an

arbitrary network.

• The use of accelerated communication, which reduces the regret dependence on the spec-

tral gap, which is important for scalability purposes. The algorithm can also deal with

stochastic communication.

5.2 Related work

Distributed Algorithms. The development of distributed algorithms for optimization and

decision-making problems is active area of research, motivated in part by the recent develop-

ment of large scale distributed systems that enable speeding up computations. In some cases,

distributed or decentralized computation is a necessary restriction that is part of the problem,

as is the case in packet routing or sensor networks. Gossip algorithms are a commonly used

framework in this area (Boyd et al., 2006; Nedic and Ozdaglar, 2009; Shah, 2009; Dimakis et al.,

2010; Duchi, Agarwal, and Wainwright, 2012; Scaman et al., 2017). In gossip algorithms, we

have an iterative procedure with processing units at the nodes of a graph and the communication

pattern dictated by the edges of the graph. A common sub-problem in these applications is to

have a value at each node that we want to average across the network. In fact, most solutions

reduce to approximate averaging. This can be achieved by using the following simple and ef-

fective method: make each node compute iteratively a weighted average of its own value and

the ones communicated by its neighbors, ensuring that the final value at each node converges

to the average of the initial values across the network. Formally, this can be represented as a

multiplication of the vector of current estimates by a communication matrix 𝑃 that respects the

network structure and satisfies some conditions that guarantee fast averaging. The averaging

can be accelerated by the use of Chebyshev polynomials (cf. Lemma 5.4.1). A number of works

in the literature consider Chebyshev acceleration applied to gossip algorithms, e.g., (Arioli and

Scott, 2014; Scaman et al., 2017).

Distributed Bandits: There are several works that study stochastic and non-stochastic dis-

tributed or decentralized multi-armed bandit problems. The precise models vary considerably.

In the stochastic case, the work of Landgren, Srivastava, and Leonard (2019b); Landgren, Srivas-

tava, and Leonard (2019a) proposes three algorithms to solve the same problem that we consider

in this work coop-UCB, coop-UCB2 and coop-UCL. The algorithm coop-UCB follows a variant
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of the natural approach to solve this problem that is discussed in Section 5.4. It needs to know

more global information about the graph than just the number of nodes and the spectral gap:

the algorithm uses a value per node that depends on the whole spectrum and the set of eigenvec-

tors of the communication matrix. The algorithm coop-UCB2 is a modification of coop-UCB,

in which the only information used about the graph is the number of nodes, and there is an

exploration function 𝑓(𝑇 ) that allows a tradeoff from the factor multiplying ln𝑇 in the regret

and the 𝑇 independent summand of the regret. Finally, coop-UCL is a Bayesian algorithm that

also incurs regret similar to coop-UCB2. Our algorithm obtains lower asymptotic regret, with

respect to 𝑇 and 𝑁 , than all these algorithms while retaining the same computational complexity

(cf. Remark 5.4.6).

Our work also draws on techniques on stochastic bandits with delayed feedback. There are

various works that study learning with delayed feedback. The most relevant work to our problem

is (Joulani, György, and Szepesvári, 2013) which studies general online learning problems under

delayed feedback. Our setting differs in that we not only deal with delayed rewards but with

approximations of them.

Several other variants of distributed stochastic MAB problems have been proposed. Chakraborty

et al. (2017) considers the setting where at each time step, the agents can either broadcast the

last obtained reward to the whole network or pull an arm. Korda, Szörényi, and Shuai (2016)

studies the setting where each agent can only send information to one other agent per round,

but this can be any agent in the network, not necessarily a neighbor. Szörényi et al. (2013)

studies the MAB problem in P2P random networks and analyze the regret based on delayed

reward estimates. Wang, Hu, et al. (2020) considers a non-decentralized version of our problem.

Assuming a given time horizon, they get near optimal regret using near optimal communication.

Some other works do not assume independence of the rewards drawn across the network. Liu

and Zhao (2010) and Kalathil, Nayyar, and Jain (2014) consider a distributed MAB problem

with collisions: if two players pull the same arm, the reward is split or no reward is obtained

at all. Moreover in the latter work and a follow-up (Nayyar, Kalathil, and Jain, 2018), the act

of communicating increases the regret. Anandkumar et al. (2011) also considers a model with

collisions and agents have to learn from action collisions rather than by exchanging information.

Shahrampour, Rakhlin, and Jadbabaie (2017) considers the setting where each agent plays a

different MAB problem and the total regret is minimized in order to identify the best action

when averaged across nodes. Nodes only send values to their neighbors but it is not a completely

decentralized algorithm, since at each time step the arm played by all the nodes is given by the

majority vote of the agents. Xu, Tekin, et al. (2015) studies a distributed MAB problem with

global feedback, i.e., with no communication involved. Kar, Poor, and Cui (2011) also considers

a different distributed bandit model in which only one agent observes the rewards for the actions

she plays, while the others observe nothing and have to rely on the information broadcast by the

first agent.
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The problem of identifying an 𝜀-optimal arm using a distributed network has also been

studied. Hillel et al. (2013) provides matching upper and lower bounds in the case that the

communication happens only once and when the graph topology is the complete graph. The

authors provide an algorithm that achieves a speed up of 𝑁 (the number agents) with log 1/𝜀

communication steps.

In the adversarial version, the best possible regret bound in the centralized setting is
√
𝐾𝑇 (Au-

dibert and Bubeck, 2009). In the decentralized case, a trivial algorithm that has no communica-

tion incurs regret 𝑁
√
𝐾𝑇 ; and a lower bound of 𝑁

√
𝑇 is known (Cesa-Bianchi et al., 2016); thus,

only the dependence on 𝐾 can be improved. Awerbuch and Kleinberg (2008) study a distributed

adversarial MAB problem with some Byzantine users, i.e., users that do not follow the protocol

or report fake observations as they wish. In the case in which there are no Byzantine users they

obtain a regret of 𝑂(𝑇 2/3(𝑁 + 𝐾) log𝑁 log 𝑇 ). To the best of our knowledge, this is the first

work that considers a decentralized adversarial MAB problem. They allow log(𝑁) communi-

cation rounds between decision steps so it differs with our model in terms of communication.

Also in the adversarial case, Cesa-Bianchi et al. (2016) studies an algorithm that achieves regret

𝑁(
√︀
𝐾1/2𝑇 log𝐾 +

√
𝐾 log 𝑇 ) and proves some results that are graph-dependent. The model is

the same as ours, but in addition to the rewards she obtains, each agent communicates to her

neighbors all the values she receives from her neighbors in the last 𝑑 rounds, that is potentially

𝑂(𝑁𝑑), which exceeds what our model allows. They get the aforementioned regret bound by

setting 𝑑 =
√
𝐾. Bar-On and Mansour (2019) studies the same problem and obtains a per agent

regret of ̃︀𝑂(
√︀
𝑇 (1 +𝐾/|𝒩 (𝑣)|)), where |𝒩 (𝑣)| is the number of neighbors of agent 𝑣.

5.3 Model and problem formulation

We consider a multi-agent network with 𝑁 agents. The agents are represented by the nodes

of an undirected and connected graph 𝐺 and each agent can only communicate to her neighbors.

Agents play the same 𝐾-armed bandit problem for 𝑇 time steps, send some values to their

neighbors after each play and receive the information sent by their respective neighbors to use it

in the next time step if they so wish. If an agent plays arm 𝑘, she receives a reward drawn from

a fixed distribution with mean 𝜇𝑘 that is independent of the agent. The draw is independent

of actions taken at previous time steps and of actions played by other agents. We assume that

rewards come from subgaussian distributions with variance proxy 𝜎2, that is, they are random

variables 𝑋 satisfying E [exp (𝑠(𝑋 − E [𝑋]))] ≤ exp
(︀
𝜎2𝑠2/2

)︀
. We use the notations 1𝑑 and 0𝑑

for the 𝑑-dimensional vectors of ones, and zeros, respectively. On the other hand, we use 1 (·)
for the indicator function, that is 1 if the argument is true and 0 otherwise.

Assume without loss of generality that 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝐾 , and let the suboptimality gap

be defined as Δ𝑘
def
= 𝜇1 − 𝜇𝑘 for any action 𝑘. Let 𝐼(𝑡,𝑖) be the random variable that represents

the action played by agent 𝑖 at time 𝑡. Let 𝑛(𝑡,𝑘)𝑖 be the number of times arm 𝑘 is pulled by node
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𝑖 up to time 𝑡 and let 𝑛(𝑡,𝑘) def
=
∑︀𝑁

𝑖=1 𝑛
(𝑡,𝑘)
𝑖 be the number of times arm 𝑘 is pulled by all the

nodes in the network up to time 𝑡. We define the regret of the whole network as

𝑅(𝑇 )
def
= 𝑇𝑁𝜇1 − E

[︃
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝜇𝐼(𝑡,𝑖)

]︃
=

𝐾∑︁
𝑘=1

Δ𝑘E
[︁
𝑛(𝑇 ,𝑘)

]︁
.

We will use this notion of regret in the entire chapter. This is sometimes known as the expected

regret or pseudoregret.

The problem is to minimize the regret while allowing each agent to send poly(𝐾) values to

her neighbors per iteration. We allow to know only little information about the graph: the total

number of nodes and a lower bound on the spectral gap of the communication matrix 𝑃 , i.e.,

1 − |𝜆2|. Here 𝜆2 is the second greatest eigenvalue of 𝑃 in absolute value. The communication

matrix can be built with little extra information about the graph, like the maximum degree of

nodes of the graph (Xiao and Boyd, 2004). However, we want to avoid building global structures,

like a spanning tree to propagate the information with a message passing algorithm, for instance.

This is because we focus on the decentralized case, not the distributed case only. Decentralized

algorithms help designing solutions for the same problem in time varying graphs or in networks

prone to communication errors. We allow for stochastic communication in this work (see the

discussion after Theorem 5.4.2) and we hope our results serve as a starting point for designing

other algorithms for other changing graphs. Decentralized solutions are also of interest for their

own sake. Bandit algorithms have a huge reach in recommendation algorithms and anything

going beyond A/B testing that requires to consider a large number of options (Glowacka, 2019;

Brodén et al., 2017; Mary, Gaudel, and Preux, 2015). Our algorithm applies not only to networks

we can control and for which we can decide to implement a decentralized protocol in order to

obtain robustness. But instead, importantly, it also applies to any network that is already

decentralized by nature. There has been a surge in the implementation of decentralized systems

in recent years, one can think for instance of blockchain structures (Raval, 2016) but any other

system running its service in a decentralized fashion for privacy, control on data or any other

reason can be considered. If a system of this kind wants to choose, for instance, what choices

of their application lead to better usability, while at the same time incurring lower regret, they

may decide to implement a decentralized MAB problem to obtain an answer as a community.

Similarly for many other decision problems.

5.4 Algorithm

We propose an algorithm that is an adaptation of the Upper Confidence Bound algorithm

(UCB) to the problem at hand and that uses a gossip protocol. We call the algorithm Decentral-

ized Delayed Upper Confidence Bound (DDUCB). UCB is a popular algorithm for the stochastic

MAB problem. At each time step, UCB computes an upper bound of a confidence interval for

the mean of each arm 𝑘, using two values: the empirical mean observed, ̂︀𝜇(𝑡)𝑘 , and the number

of times arm 𝑘 was pulled, 𝑛(𝑡,𝑘). UCB plays at time 𝑡 + 1 the arm that maximizes the upper
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confidence bound ̂︀𝜇(𝑡)𝑘 +
√︀
4𝜂𝜎2 ln(𝑡)/𝑛(𝑡,𝑘), where 𝜂 > 1 is an exploration parameter. In our

setting, as the pulls are distributed across the network, agents do not have access to these two

values, namely the number of times each arm was pulled across the network and the empirical

mean reward observed for each arm computed using the total number of pulls. Our algorithm

maintains good approximations of these values and it incurs a regret that is no more than the

one for a centralized UCB plus a term depending on the spectral gap and the number of nodes,

but independent of time. The latter summand is a consequence of the approximation of the

mean rewards. Let 𝜈(𝑡,𝑘) be the sum of rewards coming from all the pulls done to arm 𝑘 by the

entire network up to time 𝑡. We could use a gossip protocol, for every 𝑘 ∈ {1, . . . ,𝐾}, to obtain

at each node a good approximation of 𝜈(𝑡,𝑘) and the number of times arm 𝑘 was pulled, i.e.,

𝑛(𝑡,𝑘). Let ̂︀𝜈(𝑡,𝑘)𝑖 , ̂︀𝑛(𝑡,𝑘)𝑖 be the approximations of 𝜈(𝑡,𝑘) and 𝑛(𝑡,𝑘) made by node 𝑖 with a gossip

protocol at time 𝑡, respectively. Having this information at hand, agents could compute the ratiô︀𝜈(𝑡,𝑘)𝑖 /̂︀𝑛(𝑡,𝑘)𝑖 to get an estimation of the average reward of each arm. But care needs to be taken

when computing the foregoing approximations.

A classical and effective way to keep a running approximation of the average of values that are

iteratively added at each node is what we will refer to as the running consensus (Braca, Maranò,

and Matta, 2008). Let 𝒩 (𝑖) be the set of neighbors of agent 𝑖 in graph 𝐺. In this protocol, every

agent stores her current approximation and performs communication and computation steps

alternately: at each time step each agent computes a weighted average of her neighbors’ values

and adds the new value she has computed. We can represent this operation in the following way.

We will work with communication matrices 𝑃 as described in the following. Let 𝑃 ∈ R𝑁×𝑁 be

a symmetric matrix that respects the structure of the network, which is represented by a graph

𝐺. So 𝑃𝑖𝑗 = 0 if there is no edge in 𝐺 that connects 𝑖 to 𝑗. We consider 𝑃 for which the sum of

each row and the sum of each column is 1, which implies that 𝜆1
def
= 1 is an eigenvalue of 𝑃 with

1𝑁/
√
𝑁 as unit eigenvector. We further assume all other eigenvalues of 𝑃 , namely 𝜆2, . . . , 𝜆𝑁 ,

are less than one in absolute value, i.e., 1 = 𝜆1 > |𝜆2| ≥ · · · ≥ |𝜆𝑁 | ≥ 0. These three conditions

imply that the limit values in the network are averaged, i.e., 𝑃 𝑠 converges to 1𝑁1
⊤
𝑁/𝑁 for large

𝑠. See (Xiao and Boyd, 2004) for a proof and (Duchi, Agarwal, and Wainwright, 2012; Xiao

and Boyd, 2004) for a discussion on how to choose 𝑃 . We will refer to a matrix satisfying these

three conditions as a gossip matrix. If we let 𝑥(𝑡) ∈ R𝑁 denote the vector containing the current

approximations for all the agents and by 𝑦(𝑡) ∈ R𝑁 the vector containing the new values added

by each node, then the running consensus protocol can be written as

𝑥(𝑡+1) = 𝑃 𝑥(𝑡) + 𝑦(𝑡). (5.4.1)

whereas iterates of classical consensus of one vector are

𝑥(𝑡+1) = 𝑃 𝑥(𝑡). (5.4.2)

The conditions imposed on 𝑃 not only ensure that values are averaged in the limit but also
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that the averaging process is fast. In particular, for any 𝑠 ∈ N and any 𝑣 ∈ R𝑁 , we have

‖𝑃 𝑠𝑣 − 1𝑁
∑︀

𝑖 𝑣𝑖
𝑁
‖2 = ‖𝑃 𝑠𝑣 − 1𝑁1⊤

𝑁𝑣/𝑁‖2 ≤ |𝜆2|𝑠‖𝑣‖2 (5.4.3)

because 𝑃 𝑠 − 1𝑁1
⊤
𝑁/𝑁 has eigenvalues {0, 𝜆𝑠2, . . . , 𝜆𝑠𝑁}. A natural approach to the problem is

to use 2𝐾 running consensus algorithms to compute approximations of 𝜈(𝑡,𝑘)/𝑁 and 𝑛(𝑡,𝑘)/𝑁 ,

𝑘 = 1, . . . ,𝐾. Landgren, Srivastava, and Leonard (2019b) follow this approach and use extra

global information of the graph, as described in the section on related work, to account for the

inaccuracy of the mean estimate. We can estimate average rewards by their ratio and the number

of times each arm was pulled can be estimated by multiplying the quantity 𝑛(𝑡,𝑘)/𝑁 by 𝑁 . The

running consensus protocols would be the following. For 𝑘 = 1, . . . ,𝐾, start with ̂︀𝜈(1,𝑘) = 0𝑁

and update ̂︀𝜈(𝑡+1,𝑘) = 𝑃 ̂︀𝜈(𝑡,𝑘) + 𝜋(𝑡,𝑘), where the 𝑖-𝑡ℎ entry of 𝜋(𝑡,𝑘) ∈ R𝑁 contains the reward

observed by node 𝑖 at time 𝑡 if arm 𝑘 is pulled. Else, it is 0. Note that the 𝑖-𝑡ℎ entry is only

computed by the 𝑖-𝑡ℎ node. Similarly, for 𝑘 = 1, . . . ,𝐾, start with ̂︀𝑛(1,𝑘) = 0𝑁 and updatê︀𝑛(𝑡+1,𝑘) = 𝑃 ̂︀𝑛(𝑡,𝑘)+𝑝(𝑡,𝑘) ∈ R𝑁 , where 𝑝(𝑡,𝑘)𝑖 is 1 if at time 𝑡 node 𝑖 pulled arm 𝑘 and 0 otherwise.

The problem with this approach is that even if the values computed are being mixed at a fast

pace it takes some time for the last added values to be mixed, resulting in poor approximations,

especially if 𝑁 is large. This phenomenon is more intense when the spectral gap is smaller.

Indeed, we can rewrite (5.4.1) as 𝑥(𝑡) =
∑︀𝑡−1

𝑠=1 𝑃
𝑡−1−𝑠𝑦(𝑠), assuming that 𝑥(1) = 0. For the

values of 𝑠 that are not too close to 𝑡 − 1 we have by (5.4.3) that 𝑃 𝑡−1−𝑠𝑦(𝑠) is very close

to the vector that has as entries the average of the values in 𝑦(𝑠), that is,
(︁

1
𝑁

∑︀𝑁
𝑗=1 𝑦

(𝑠)
𝑗

)︁
1𝑁 .

However, for values of 𝑠 close to 𝑡− 1 this is not true and the value of 𝑦(𝑠) heavily influences the

resulting estimate, being specially inaccurate as an estimation of the true mean if 𝑁 is large.

The key observations that lead to the algorithm we propose are that the number of the values

of 𝑠 close to 𝑡 − 1 is small, as we quantify in the sequel, that we can make it even smaller

using accelerated gossip techniques and that the regret of UCB does not increase much when

working with delayed values of rewards so we can temporarily ignore the recently computed

rewards in order to work with much more accurate approximations of 𝜈(𝑡,𝑘)/𝑁 and 𝑛(𝑡,𝑘)/𝑁 .

In particular, with 𝐶 communication steps agents can compute a polynomial 𝑞𝐶 of degree 𝐶 of

the communication matrix 𝑃 applied to a vector, that is, 𝑞𝐶(𝑃 )𝑣. The acceleration comes from

computing a rescaled Chebyshev polynomial and it is encapsulated in the following lemma. This

approach was used in previous works (Scaman et al., 2017).

Lemma 5.4.1. Let 𝑃 be a gossip matrix. Let 𝑣 ∈ R𝑁 and let 𝐶 = ⌈ ln(2𝑁/𝜀)√
2 ln(1/|𝜆2|)

⌉. Agents can

compute, after 𝐶 communication steps, the value 𝑞𝐶(𝑃 )𝑣 for a polynomial 𝑞𝐶 of degree 𝐶 which

satisfies ‖𝑞𝐶(𝑃 )𝑣 − 1𝑁1⊤
𝑁𝑣/𝑁‖2 ≤ 𝜀/𝑁‖𝑣‖2.

Proof This Chebyshev approach comes from the first accelerated algorithms that minimize

a convex quadratic, cf. Section 2.3. Define the Chebyshev polynomials of the first kind as

𝑇0(𝑡) = 1, 𝑇1(𝑡) = 𝑡 and 𝑇𝑟(𝑡) = 2𝑡𝑇𝑟−1(𝑡) − 𝑇𝑟−2(𝑡) for 𝑟 > 1. Then, define the rescaled
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Chebyshev polynomial

𝑞𝑟(𝑡) =
𝑇𝑟(𝑡/|𝜆2|)
𝑇𝑟(1/|𝜆2|)

.

Let 𝜅 =
1+|𝜆2|
1−|𝜆2|

, and 𝐶 = ⌈ ln(2𝑁/𝜀)√
2 ln(1/|𝜆2|)

⌉. Then for any 𝑡 ∈ [−|𝜆2|, |𝜆2|] the polynomial 𝑞𝐶 satisfies:

𝑞𝐶(𝑡)
1
≤ 2

(︁√
𝜅−1√
𝜅+1

)︁𝐶
1 +

(︁√
𝜅−1√
𝜅+1

)︁2𝐶 < 2

(︂√
𝜅− 1√
𝜅+ 1

)︂𝐶 2
≤ 2 exp (− log(2𝑁/𝜀)) ≤ 𝜀

𝑁
.

See (Auzinger and Melenk, 2011) for 1 . Inequality 2 is true for 𝑥 ∈ [0, 1) since

exp

(︃
1/
√︀

2 ln(1/𝑥) ln

(︃
1 +

−2√︀
(1 + 𝑥)/(1− 𝑥) + 1

)︃)︃
≤ 𝑒−1,

because the expression is monotone its lim𝑥→1− of it is 𝑒−1. We also have 𝑞𝐶(1) = 1. This

implies that the absolute value of all the eigenvalues of the matrix 𝑞𝐶(𝑃 ) is less than 𝜀
𝑁 but for

the greatest one, which is 1. The previous property implies ‖𝑞𝐶(𝑃 ) − 1
𝑁 1𝑁1

⊤
𝑁‖2 ≤

𝜀
𝑁 , because

the matrix 𝑞𝐶(𝑃 ) is diagonalizable by orthogonality and so it splits as a sum of weighted outer

products of its weighted eigenvectors. Finally, we have

‖𝑞𝐶(𝑃 )𝑣 − 1

𝑁
1𝑁1

⊤
𝑁𝑣‖2 ≤ ‖𝑞𝐶(𝑃 )− 1

𝑁
1𝑁1

⊤
𝑁‖2‖𝑣‖2 ≤

𝜀

𝑁
‖𝑣‖2.

Note that by definition 𝑞𝑟(𝑃 ) can be computed iteratively as

𝜔(𝑟+1)𝑞𝑟+1(𝑃 ) =
2

|𝜆2|
𝜔(𝑟)𝑃 𝑞𝑟(𝑃 )− 𝜔(𝑟−1)𝑞𝑟−1(𝑃 ), (5.4.4)

for 𝑟 ≥ 1 where 𝜔(𝑟) = 𝑇𝑟(1/|𝜆2|). Again by the definition of the Chebyshev polynomial, 𝜔(𝑟)

can be computed iteratively as 𝜔(0) = 1, 𝜔(1) = 1/|𝜆2| and 𝜔(𝑟+1) = 2𝜔(𝑟)/|𝜆2|−𝜔(𝑟−1) for 𝑟 > 1.

Also note that if we have a vector 𝑢 ∈ R𝑁 we can slightly modify the recursion in (5.4.4) to

compute 𝑞𝐶(𝑃 )𝑢 using the gossip protocol 𝐶 times:

𝑦(𝑟+1) =
𝜔(𝑟)

𝜔(𝑟+1)

2

|𝜆2|
𝑃 𝑦(𝑟) − 𝜔(𝑟−1)

𝜔(𝑟+1)
𝑦(𝑟−1), (5.4.5)

for 𝑟 > 1, where we denote 𝑦(𝑟) = 𝑞𝑟(𝑃 )𝑢 ∈ R𝑁 .

For a given a vector 𝑢 we want to mix, it holds that coordinate 𝑗 of 𝑞𝐶(𝑃 )𝑢, which is the

value held by node 𝑗, is a weighted sum of 𝑢𝑖, 1 ≤ 𝑖 ≤ 𝑁 where weights 𝑞𝐶(𝑃 )𝑖,𝑗 are close to 1/𝑁 ,

since applying the lemma to 𝑣 ∈ {𝑒1, . . . , 𝑒𝑁} we obtain that |𝑞𝐶(𝑃 )𝑖,𝑗− 1
𝑁 | ≤ 𝜀/𝑁 . Analogously,

it can be done with 𝑃 𝑠𝑢, coming from (5.4.2), for 𝑠 such that |𝜆2|𝑠 ≤ 𝜀/𝑁 . At iteration 𝑟 of

either protocol (5.4.2) or (5.4.5), agent 𝑖 only computes the 𝑖-th entry of 𝑃 𝑟𝑢 or 𝑞𝑟(𝑃 )𝑢 and only

uses her own information and the weighted information sent by her neighbors, i.e., at most one

multiplication by 𝑃 is allowed. We can use either method to approximate 𝜈(𝑡,𝑘)/𝑁 and 𝑛(𝑡,𝑘)/𝑁 .

We now describe DDUCB at node 𝑖. The pseudocode is given in Algorithm 9. We use Greek

letters to denote variables that contain rewards estimators, and corresponding Latin letters to
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Algorithm 8 Accelerated communication and mixing step. mix(𝑦(𝑟)𝑖 , 𝑟, 𝑖)

1: if 𝑟 is 0 then
2: 𝜔(0) ← 1/2; 𝜔(−1) ← 0

3: 𝑦
(0)
𝑖 ← 𝑦

(0)
𝑖 /2; 𝑦(−1)

𝑖 ← (0, . . . , 0)
4: end if
5: Send 𝑦(𝑟)𝑖 to neighbors
6: Receive corresponding values 𝑦(𝑟)𝑗 , ∀𝑗 ∈ 𝒩 (𝑖)

7: 𝑦
(𝑟)
𝑖 ←

∑︀
𝑗∈𝒩 (𝑖) 2𝑃𝑖𝑗𝑦

(𝑟)
𝑗 /|𝜆2|

8: 𝜔(𝑟+1) ← 2𝜔(𝑟)/|𝜆2| − 𝜔(𝑟−1)

9: 𝑦
(𝑟+1)
𝑖 = 𝜔(𝑟)

𝜔(𝑟+1) 𝑦
(𝑟)
𝑖 −

𝜔(𝑟−1)

𝜔(𝑟+1) 𝑦
(𝑟−1)
𝑖

10: if 𝑟 is 0 then
11: 𝑦

(0)
𝑖 ← 2𝑦

(0)
𝑖 ; 𝜔(0) ← 2𝜔(0)

12: end if
13: return 𝑦

(𝑟+1)
𝑖

denote variables that contain counter estimators. Agents run an accelerated running consensus in

stages of 𝐶 iterations. Each node maintains three pairs of 𝐾-dimensional vectors. The variable

𝛼(𝑖) contains rewards that are already mixed, 𝛽(𝑖) contains rewards that are being mixed and 𝛾(𝑖)

contains rewards obtained in the current stage. The vectors 𝑎(𝑖), 𝑏(𝑖) and 𝑐(𝑖) store the number of

arm pulls associated to the quantities 𝛼(𝑖), 𝛽(𝑖) and 𝛾(𝑖), respectively. At the beginning, agent 𝑖

pulls each arm once and initialize 𝛼(𝑖) and 𝑎(𝑖) with the observed values divided by 𝑁 , since the

these variables are designed to contain average estimations of their respective quantities. During

each stage, for 𝐶 iterations, agent 𝑖 uses 𝛼(𝑖) and 𝑎(𝑖), as updated at the end of the previous

stage, to decide which arm to pull using an upper confidence bound. Variables 𝛽(𝑖) and 𝑏(𝑖) are

being mixed in an accelerated way and 𝛾(𝑖) and 𝑐(𝑖) are added new values obtained by the new

pulls done in the current stage. After 𝐶 iterations, values in 𝛽(𝑖) and 𝑏(𝑖) are mixed enough so

we add them to 𝛼(𝑖) and 𝑎(𝑖). The only exception being the end of the first stage in which the

values of the latter variables are overwritten by the former ones. Variables 𝛿(𝑖) and 𝑑(𝑖) just serve

to make this distinction. The unmixed information about the pulls obtained in the last stage,

i.e., 𝛾(𝑖) and 𝑐(𝑖), is assigned to 𝛽(𝑖) and 𝑏(𝑖) so the process can start again. Variables 𝛾(𝑖) and

𝑐(𝑖) are reset with zeroes. There are 𝑇 iterations in total.

Now we describe some mathematical properties about the variables during the execution of

the algorithm. Let 𝑡𝑆 be the time at which a stage begins, so it ends at 𝑡𝑆 + 𝐶 − 1. At 𝑡 = 𝑡𝑆 ,

using the notation above, it is 𝛼(𝑖)
𝑘 =

∑︀𝑡𝑆−𝐶
𝑠=1

(︀
𝑞𝐶(𝑃 )𝜋(𝑠,𝑘)

)︀
𝑖

and 𝑎
(𝑖)
𝑘 =

∑︀𝑡𝑆−𝐶
𝑠=1

(︀
𝑞𝐶(𝑃 )𝑝(𝑠,𝑘)

)︀
𝑖

but in the first stage, in which their values are initialized from a local pull. In particular, let

𝑋
(𝑖)
1 , . . . , 𝑋

(𝑖)
𝐾 denote the rewards obtained when pulling all the arms before starting the first

stage. Then the initialization is 𝛼(𝑖) ← (𝑋
(𝑖)
1 /𝑁, . . . ,𝑋

(𝑖)
𝐾 /𝑁) and 𝑎(𝑖) ← (1/𝑁, . . . , 1/𝑁). The

division by 𝑁 is due to 𝛼
(𝑖)
𝑘 and 𝑎

(𝑖)
𝑘 being the approximations of 𝜈(𝑡,𝑘)𝑖 /𝑁 and 𝑛

(𝑡,𝑘)
𝑖 /𝑁 . The

algorithm does not update 𝛼(𝑖) and 𝑎(𝑖) again until 𝑡 = 𝑡𝑆 +𝐶, so they contain information that

at the end of the stage is delayed by 2𝐶 − 1 iterations. The time step 𝑠 used to compute the

upper confidence bound is (𝑡𝑆 −𝐶)𝑁 , since 𝛼(𝑖) and 𝑎(𝑖) contain information about that number
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Algorithm 9 Decentralized Delayed UCB at node 𝑖 (and some variants, cf. Remark 5.4.7).
“mix” is given by (5.4.2) (no acceleration) or Algorithm 8 (acceleration)

1: 𝜁(𝑖) ← (𝑋
(𝑖)
1 , . . . , 𝑋

(𝑖)
𝐾 ) ; 𝑧(𝑖) ← 1𝐾

2: 𝐶 ← (5.4.6)
3: 𝛼(𝑖) ← 𝜁(𝑖)/𝑁 ; 𝑎(𝑖) ← 𝑧(𝑖)/𝑁 ; 𝛽(𝑖) ← 𝜁(𝑖) ; 𝑏(𝑖) ← 𝑧(𝑖)

4: 𝛾(𝑖) ← 0𝐾 ; 𝑐(𝑖) ← 0𝐾 ; 𝛿(𝑖) ← 0𝐾 ; 𝑑(𝑖) ← 0𝐾
5: 𝑡← 𝐾 ; 𝑠← 𝐾
6: while 𝑡 ≤ 𝑇 do
7: for 𝑟 = 0 to 𝐶 − 1 do

8: 𝑘* ← argmax𝑘∈{1,...,𝐾}

{︃
𝛼
(𝑖)
𝑘

𝑎
(𝑖)
𝑘

+

√︂
2𝜂𝜎2 ln 𝑠

𝑁𝑎
(𝑖)
𝑘

}︃
9: 𝑢← Play arm 𝑘*, return reward

10: 𝛾
(𝑖)
𝑘* ← 𝛾

(𝑖)
𝑘* + 𝑢 ; 𝑐(𝑖)𝑘* ← 𝑐

(𝑖)
𝑘* + 1

11: 𝛽(𝑖) ← mix(𝛽(𝑖), 𝑟, 𝑖) ; 𝑏(𝑖) ← mix(𝑏(𝑖), 𝑟, 𝑖)
12: 𝑡← 𝑡+ 1 ◇ It also works if we use 13-14 and/or 15
13: // 𝛼(𝑖)

𝑘* ← 𝛼
(𝑖)
𝑘* + 𝑢/𝑁 ; 𝑎(𝑖)𝑘* ← 𝑎

(𝑖)
𝑘* + 1/𝑁

14: // 𝑠← 𝑠+ 1
15: // 𝛿(𝑖) ← unaccel_mix(𝛿(𝑖), 𝑖) ; 𝑑(𝑖) ← unaccel_mix(𝑑(𝑖), 𝑖) ◇ cf. (5.4.2)
16: if 𝑡 > 𝑇 then return end if
17: end for
18: 𝑠← (𝑡− 𝐶)𝑁
19: 𝛿(𝑖) ← 𝛿(𝑖) + 𝛽(𝑖) ; 𝑑(𝑖) ← 𝑑(𝑖) + 𝑏(𝑖) ; 𝛼(𝑖) ← 𝛿(𝑖) ; 𝑎(𝑖) ← 𝑑(𝑖)

20: 𝛽(𝑖) ← 𝛾(𝑖) ; 𝑏(𝑖) ← 𝑐(𝑖) ; 𝛾(𝑖) ← 0𝐾 ; 𝑐(𝑖) ← 0𝐾
21: end while

of rewards and pulls. The variable 𝛾(𝑖) is needed because we need to mix 𝛽(𝑖) for 𝐶 steps so

the Chebyshev polynomial of degree 𝐶 is computed and meanwhile we store the new rewards

by adding them to 𝛾(𝑖). In this way agents compute upper confidence bounds with accurate

approximations, with a delay of at most 2𝐶 − 1. As we will see, the regret of UCB does not

increase much when working with delayed estimates. In particular, having a delay of d steps

increases the regret by at most d
∑︀𝐾

𝑘=1Δ𝑘.

We now present the regret which the DDUCB algorithm incurs. We use 𝐴 . 𝐵 to denote

there is a constant 𝑐 > 0 such that 𝐴 ≤ 𝑐𝐵.

Theorem 5.4.2 (Regret of DDUCB). Let 𝑃 be a gossip matrix. Consider the distributed

multi-armed bandit problem with 𝑁 nodes, 𝐾 actions and subgaussian rewards with variance

proxy 𝜎2. The algorithm DDUCB satisfies:

𝑅(𝑇 ) .
∑︁

𝑘:Δ𝑘>0

𝜂(1 + 𝜀)𝜎2 ln(𝑇𝑁)

Δ𝑘

+

(︂
𝑁𝐶 +

𝜂

𝜂 − 1

)︂ 𝐾∑︁
𝑘=1

Δ𝑘.

Here, 𝜂 > 1 is an exploration parameter, 𝜀 ∈ (0, 𝜂−1
7(𝜂+1)) is an accuracy parameter. For instance,

we can set 𝜂 = 2, 𝜀 = 1/22 so the regret is

𝑅(𝑇 ) .
∑︁

𝑘:Δ𝑘>0

𝜎2 ln(𝑇𝑁)

Δ𝑘

+𝑁𝐶
𝐾∑︁
𝑘=1

Δ𝑘.
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And this choice of parameters incurs small constants only. The parameter

𝐶 =

⌈︃
ln(𝑁/𝜀)

ln(1/|𝜆2|)

⌉︃
or 𝐶 =

⌈︃
ln(2𝑁/𝜀)√︀
2 ln(1/|𝜆2|)

⌉︃
(5.4.6)

is a delay parameter for the unaccelerated (5.4.2) and accelerated (5.4.4) mixing protocols, re-

spectively.

Note the constant 𝐶, which is a parameter that indicates when values are close enough to

be mixed, requires the value |𝜆2|. However, if we use DDUCB with delay parameter set to

any upper bound 𝐸 of the suggested value 𝐶, then the inequality above still holds true, if we

substitute 𝐶 by 𝐸. So having an upper bound on |𝜆22| is enough. The accelerated protocol

improves in the harder regime, when the spectral gap is close to 1, as long as |𝜆2| > 1/𝑒,

i.e., whenever 1/ ln1/2 |𝜆−1
2 | < 1/ ln |𝜆−1

2 |. The knowledge of the spectral gap is a standard

assumption in decentralized literature (Scaman et al., 2017; Duchi, Agarwal, and Wainwright,

2012; Dimakis et al., 2010) and there are works that show how to estimate it (Franceschelli et

al., 2013). Other gossip protocols different from (5.4.2) and (5.4.4) can be used, as long as they

guarantee deviation from the average 1𝑁1
⊤
𝑁𝑣/𝑁 lower than ‖𝑣‖2𝜀/𝑁 after 𝐶 steps, for a vector

𝑣 ∈ R𝑁 . For instance, for some graphs it can be convenient to use the accelerated protocol

in (Berthier, Bach, and Gaillard, 2020). Decentralized algorithms like ours are also useful to

deal with problems on time-varying graphs or on networks prone to communication errors. In

particular, stochastic gossip algorithms also come guarantees with high probability. For instance

if we have stochastic i.i.d. communication matrices 𝑃 (𝑡) that are symmetric, then with 𝐶 =

⌈log(𝑁2/(𝜀2𝛿))/ log(𝜆2(E
[︀
𝑃 (𝑡)2

]︀
)−1)⌉ and 𝑣 ∈ R𝑁 it is ‖

∏︀𝑟+𝐶
𝑖=𝑟 𝑃 (𝑖)𝑣−1𝑁1⊤

𝑁𝑣/𝑁‖ ≤ 𝜀‖𝑣‖2/𝑁
with probability at least 1 − 𝛿 (Duchi, Agarwal, and Wainwright, 2012; Loizou and Richtárik,

2019). So (5.4.2) can be used in this case to have an algorithm that satisfies the inequality with

high probability for every stage. See (Loizou and Richtárik, 2019) and references therein for

more on stochastic gossip algorithms. Note that communication rules independent of the time

step, as in the unaccelerated running consensus, allow for the possibility that the mixed values

are mixed throughout the whole execution of the algorithm, i.e., we can update 𝛽(𝑖) and 𝑏(𝑖) as

𝛽(𝑖) ← 𝛽(𝑖) + 𝛾(𝑖) and 𝑏(𝑖) ← 𝑏(𝑖) + 𝑐(𝑖) (in such a case we need to use 𝛼(𝑖) ← 𝛽(𝑖) and 𝑎(𝑖) ← 𝑏(𝑖)

too). This provides more accurate estimations of the means. Our accelerated protocol is not

stationary, but one can use an asymptotically optimal and stationary gossip protocol (cf. (Liu,

Anderson, et al., 2013; Berthier, Bach, and Gaillard, 2020)) for regimes of spectral gap close to

1.

The proof of Theorem 5.4.2 is along the lines of the one for the standard UCB algorithm cf.

(Auer, Cesa-Bianchi, and Fischer, 2002) but requires a couple of key modifications. Firstly, we

need to control the error due to the fact that each agent decides with some delay which arm to

pull, because only mixed information is is used. Secondly, we need to control the error due to

agents only having approximations of 𝜈(𝑡,𝑘) and 𝑛(𝑡,𝑘), that is, to the true sum of rewards and

number of times each arm was pulled respectively.
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We present two lemmas before the proof. As explained after Lemma 5.4.1, one can think

about each reward as being added at each node weighted by a number. The weights are entries

of 𝑞𝐶(𝑃 ) or 𝑃 𝐶 and they approach 1/𝑁 quickly.

Lemma 5.4.3 (Concentration). Let 𝑌1, . . . , 𝑌𝐷 be independent random variables coming from

the distribution associated to an arm 𝑘, which we assume to be subgaussian with variance proxy

𝜎2 and mean 𝜇𝑘. Let 𝜀 ∈ (0, 𝜂−1
7(𝜂+1)), for 𝜂 > 1, and let 𝑠 > 1. Let 𝑤𝑗 be a number such that

|𝑤𝑗 − 1
𝑁 | < 𝜀/𝑁 , for all 𝑗 = 1, . . . , 𝐷. Then

P

[︃
𝜉 ·

(︃∑︀𝐷
𝑗=1𝑤𝑗𝑌𝑗∑︀𝐷
𝑗=1𝑤𝑗

− 𝜇𝑘

)︃
≥
√︃

4𝜂𝜎2 ln 𝑠

𝑁
∑︀𝐷

𝑗=1𝑤𝑗

]︃
≤ 1

𝑠𝜂+1

where 𝜉 ∈ {−1, 1}.

Proof Since 𝑌𝑗 is subgaussian with variance proxy 𝜎2 we have that 𝑤𝑗𝑌𝑗/(
∑︀
𝑤𝑗) is subgaussian

with variance proxy 𝑤2
𝑗𝜎

2/(
∑︀

𝑗 𝑤𝑗)
2. Therefore, using subgaussianity and the fact that the

random variables 𝑌𝑗 , for 𝑗 = 1, . . . , 𝐷, are independent we can bound the left hand side by

Hoeffding’s inequality for subgaussian random variables:

exp

(︃
−(4𝜂𝜎2 ln 𝑠)/(𝑁

∑︀
𝑤𝑗)

2𝜎2
∑︀
𝑤2
𝑗/(
∑︀
𝑤𝑗)2

)︃
=

1

𝑠2𝜂/(𝑁𝑊 )
,

where 𝑊 def
=
∑︀
𝑤2
𝑗/
∑︀
𝑤𝑗 . Using

⃒⃒
𝑤𝑗 − 1

𝑁

⃒⃒
< 𝜀/𝑁 we obtain

𝜂/(𝑁𝑊 ) = 𝜂

(︃
𝑁

∑︀
𝑤2
𝑗∑︀

𝑤𝑗

)︃−1

≥ 𝜂
(︂
𝑁
𝐷((1 + 𝜀)/𝑁)2

𝐷((1− 𝜀)/𝑁)

)︂−1

=
𝜂(1− 𝜀)
(1 + 𝜀)2

>
𝜂 + 1

2
.

The last step is a consequence of 𝜀 < 𝜂−1
7(𝜂+1) . The result follows.

At time 𝑡 and at node 𝑖, we want to use the variables 𝛼(𝑡,𝑖) and 𝑎(𝑡,𝑖), which we use to denote

the value of 𝛼(𝑖) and 𝑎(𝑖) from Algorithm 9 at time 𝑡, to decide the next arm to pull at that

node. Consider the rewards computed by all the nodes until 𝐶 steps before the last time 𝛼(𝑖) and

𝑎(𝑖) were updated. That is, the rewards whose sum is approximated by 𝑁𝛼(𝑖). Let 𝐽 (𝑡)
𝑘 be the

number of these rewards that come from arm 𝑘 and let 𝑋(𝑗)
𝑘 , 1 ≤ 𝑗 ≤ 𝐽 (𝑡)

𝑘 be such rewards sorted

by the round they were obtained and, in case of a tie, by node index. Note this agrees with our

notation for the pulls in the initialization of Algorithm 9. With this notation, we have in node 𝑖

that 𝛼(𝑡,𝑖)
𝑘 is the sum of each of the 𝑋(𝑗)

𝑘 multiplied by a weight 𝑤(𝑡,𝑖,𝑗)
𝑘 , where the sum of all the

weights of all the nodes is
∑︀

𝑖𝑤
(𝑡,𝑖,𝑗)
𝑘 = 1. Indeed, by construction it is 𝛼(𝑡,𝑖)

𝑘 =
∑︀

𝑗∈𝐽(𝑡)
𝑘

𝑃 𝐶
𝑖,𝑗𝑋

(𝑗)
𝑘 or

𝛼
(𝑡,𝑖)
𝑘 =

∑︀
𝑗∈𝐽(𝑡)

𝑘

𝑞𝐶(𝑃 )𝑖,𝑗𝑋
(𝑗)
𝑘 , depending on the communication protocol, then 𝑤(𝑡,𝑖,𝑗)

𝑘 corresponds

to an entry of 𝑃 𝐶 or 𝑞𝐶(𝑃 ), which are doubly stochastic matrices. All rewards considered have

been mixing for 𝐶 steps. This ensures
⃒⃒⃒
𝑤

(𝑡,𝑖,𝑗)
𝑘 − 1

𝑁

⃒⃒⃒
< 𝜀

𝑁 by (5.4.3) and Lemma 5.4.1, so the

previous lemma can be applied to these weights. Define the empirical mean of arm 𝑘 at node 𝑖
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and time 𝑡 as

̂︀𝜇(𝑡,𝑖)𝑘
def
=
𝛼
(𝑡,𝑖)
𝑘

𝑎
(𝑡,𝑖)
𝑘

=

∑︀𝐽
(𝑡)
𝑘
𝑗=1𝑤

(𝑡,𝑖,𝑗)
𝑘 𝑋

(𝑗)
𝑘∑︀𝐽

(𝑡)
𝑘
𝑗=1𝑤

(𝑡,𝑖,𝑗)
𝑘

.

Let UCB(𝑡, 𝑠, 𝑘, 𝑖)
def
= ̂︀𝜇(𝑡,𝑖)𝑘 +

√︂
4𝜂𝜎2 ln 𝑠

𝑁
∑︀
𝑗 𝑤

(𝑡,𝑖,𝑗)
𝑘

and let 𝐼(𝑡,𝑖) be the random variable that represents

the arm pulled at time 𝑡 by node 𝑖, which is the one that maximizes UCB(𝑡, 𝑠, 𝑘, 𝑖), for a certain

value 𝑠.

Lemma 5.4.4. Let 𝑘 be a suboptimal arm. We have

P

(︃
𝐼(𝑡,𝑖) = 𝑘,𝑁

𝐽
(𝑡)
𝑘∑︁
𝑗=1

𝑤
(𝑡,𝑖,𝑗)
𝑘 >

16𝜂𝜎2 ln 𝑠

Δ2
𝑘

)︃
≤ 2𝑁𝑠(𝑡)

𝑠𝜂+1
,

where 𝑠(𝑡) def
= 1

𝑁

∑︀𝐾
𝑘=1 𝐽

(𝑡)
𝑘 , and where 𝑁𝑠(𝑡) corresponds to the number of rewards obtained by all

the nodes until 𝐶 steps before the last time 𝛼(𝑖) and 𝑎(𝑖) were updated.

Proof Recall that 𝜇1 ≥ 𝜇𝑘 for any 𝑘 ∈ [𝐾]. It is enough to bound P (UCB(𝑡, 𝑠, 1, 𝑖) ≤ 𝜇1) and

P
(︁̂︀𝜇(𝑡,𝑖)𝑘 > 𝜇𝑘 +

√︁
4𝜂𝜎2 ln 𝑠
𝑁

∑︀
𝑤𝑗

)︁
and use the union bound, since if these two events are false we can

apply 1 and 3 in the following and obtain 𝐼(𝑡,𝑖) ̸= 𝑘:

UCB(𝑡, 𝑠, 𝑘, 𝑖) = ̂︀𝜇(𝑡,𝑖)𝑘 +

⎯⎸⎸⎷ 4𝜂𝜎2 ln 𝑠

𝑁
∑︀

𝑗 𝑤
(𝑡,𝑖,𝑗)
𝑘

1
≤ 𝜇𝑘 + 2

⎯⎸⎸⎷ 4𝜂𝜎2 ln 𝑠

𝑁
∑︀

𝑗 𝑤
(𝑡,𝑖,𝑗)
𝑘

2
< 𝜇𝑘 +Δ𝑘

= 𝜇1
3
< UCB(𝑡, 𝑠, 1, 𝑖).

Inequality 2 is equivalent to 𝑁
∑︀

𝑗 𝑤
(𝑡,𝑖,𝑗)
𝑘 > 16𝜂𝜎2 ln 𝑠

Δ2
𝑘

.

Now, since 1 ≤ 𝐽 (𝑡)
𝑘 ≤ 𝑁𝑠

(𝑡) we have by the union bound and Lemma 5.4.3

P(UCB(𝑡, 𝑠, 1, 𝑖) ≤ 𝜇1) ≤ P
(︁
∃ℓ ∈ {1, . . . , 𝑁𝑠(𝑡)} : 𝐽 (𝑡)

𝑘 = ℓ,UCB(𝑡, 𝑠, 1, 𝑖) ≤ 𝜇1
)︁

≤
𝑁𝑠(𝑡)∑︁
ℓ=1

P
(︁
UCB(𝑡, 𝑠, 1, 𝑖) ≤ 𝜇1|𝐽 (𝑡)

𝑘 = ℓ
)︁
≤

𝑁𝑠(𝑡)∑︁
ℓ=1

1

𝑠𝜂+1
=
𝑁𝑠(𝑡)

𝑠𝜂+1
.

The bound of P
(︁̂︀𝜇(𝑡,𝑖)𝑘 > 𝜇𝑘 +

√︁
4𝜂𝜎2 ln 𝑠
𝑁

∑︀
𝑤𝑗

)︁
is analogous.

Now we proceed to prove the theorem.

Proof of Theorem 5.4.2. For every 𝑡 ≥ 𝐾 we can write 𝑡 uniquely as 𝐾 + 𝐶𝜌𝑡 + 𝑟𝑡, where

𝜌𝑡 ≥ 0 and 0 ≤ 𝑟𝑡 < 𝐶. In such a case it is

𝑠(𝑡) = 𝐾max (1 (𝜌𝑡 > 0) , 1/𝑁) + 𝐶(𝜌𝑡 − 1)1 (𝜌𝑡 > 1) ,

where 𝑠(𝑡) is defined in Lemma 5.4.4. The time step 𝑠 that we use to compute the upper confidence

bounds at time 𝑡 is 𝑠 = 𝑁𝑠(𝑡). It is fixed every 𝐶 iterations. For 𝑡 ≥ 𝐾 +𝐶, the value 𝑠(𝑡)+𝐶 is

equal to the last time step in which the variables 𝛼(𝑖) and 𝑎(𝑖) were updated. Thus, by definition

𝐽
(𝑡)
𝑘 = 𝑛(𝑠

(𝑡),𝑘). Remember 𝑛(𝑡,𝑘)𝑖 is the number of times arm 𝑘 is pulled by node 𝑖 up to time
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𝑡, and 𝑛(𝑡,𝑘) =
∑︀𝑁

𝑖=1 𝑛
(𝑡,𝑘)
𝑖 . Since 𝑅(𝑇 ) =

∑︀𝐾
𝑘=1Δ𝑘E[𝑛

(𝑇 ,𝑘)], it is enough to bound E[𝑛(𝑇 ,𝑘)] for

every 𝑘 = 1, . . . ,𝐾.

Let 𝑘 be fixed and denote the event {𝐼(𝑡,𝑖) = 𝑘} by 𝐴(𝑡,𝑖). We have

E[𝑛(𝑇 ,𝑘)] = 𝑁 + E

[︃
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=𝐾+1

1
(︁
𝐴(𝑡,𝑖)

)︁]︃

= 𝑁 + E

[︃
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=𝐾+1

1

(︃
𝐴(𝑡,𝑖), 1 ≤ 16𝜂𝜎2 ln(𝑠(𝑡)𝑁)

𝑁
∑︀

𝑗 𝑤
(𝑡,𝑖,𝑗)
𝑘 Δ2

𝑘

)︃]︃

+ E

[︃
1

(︃
𝐴(𝑡,𝑖), 1 >

16𝜂𝜎2 ln(𝑠(𝑡)𝑁)

𝑁
∑︀

𝑗 𝑤
(𝑡,𝑖,𝑗)
𝑘 Δ2

𝑘

)︃]︃
1
≤ 𝑁 + E

[︃
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=𝐾+1

1

(︂
𝐴(𝑡,𝑖), 𝑛(𝑠

(𝑡),𝑘) ≤ 16𝜂𝜎2 ln(𝑇𝑁)

Δ2
𝑘/(1 + 2𝜀)

)︂]︃
+𝑁

𝑇∑︁
𝑡=𝐾+1

2

(𝑠(𝑡)𝑁)𝜂

2
< 𝑁 +

16𝜂𝜎2 ln(𝑇𝑁)

Δ2
𝑘/(1 + 2𝜀)

+ 2𝑁𝐶 +
2𝑁𝐶

𝐾𝜂

(︂
1 +

1

𝑁𝜂

)︂
+

2

(𝑁𝐶)𝜂−1

∞∑︁
𝑟=⌊𝐾/𝐶⌋+1

1

𝑟𝜂

3
.

𝜂𝜎2 ln(𝑇𝑁)

Δ2
𝑘/(1 + 𝜀)

+𝑁𝐶 +
𝜂

𝜂 − 1
.

For the bound of the first summand in 1 note that
⃒⃒⃒
𝑤

(𝑡,𝑖,𝑗)
𝑘 − 1

𝑁

⃒⃒⃒
< 𝜀/𝑁 and that 𝐽 (𝑡)

𝑘 =

𝑛(𝑠
(𝑡),𝑘). Thus, (︁

𝑁
∑︁
𝑗

𝑤
(𝑡,𝑖,𝑗)
𝑘

)︁−1
≤
(︁
𝑛(𝑠

(𝑡),𝑘) (1− 𝜀)
)︁−1
≤ (1 + 2𝜀) /𝑛(𝑠

(𝑡),𝑘).

We have used 𝜀 < 1/2 for the last step, which is a consequence of 𝜀 < 𝜂−1
7(𝜂+1) for 𝜂 > 1. The bound

for the second summand uses Lemma 5.4.4. For the bound of the expectation in 2 , note that,

by definition, 𝐴(𝑡,𝑖) for 1 ≤ 𝑡 ≤ 𝑇 can only happen 𝑛(𝑡,𝑘) times but 𝑛(𝑡,𝑘) ≤ 𝑛(𝑠(𝑡),𝑘)+𝑁(𝑡− 𝑠𝑡) ≤
𝑛(𝑠

(𝑡),𝑘) + 2𝑁𝐶. So 1
(︁
𝐼𝑡,𝑖+1 = 𝑘, 𝑛(𝑠

(𝑡),𝑘) < 16𝜂𝜎2 ln(𝑇𝑁)
Δ2
𝑘/(1+2𝜀)

)︁
can be 1 at most 6𝜂𝜎2 ln(𝑇𝑁)

Δ2
𝑘/(1+2𝜀)

+ 2𝑁𝐶

times. The term 2𝑁𝐶 accounts for the delay of the algorithm. In the second part of inequality

2 we substitute 𝑠(𝑡) by its value and for 𝑡 > 𝐾 + 2𝐶 we bound it by the greatest multiple of

𝐶 that is less than 𝑠(𝑡). For 3 , note that the sum over 𝑟 is bounded by 𝜁(𝜂), where 𝜁(·) is the

Riemann zeta function. Then we use 𝜁(𝑥) < 𝑥
𝑥−1 for all 𝑥 > 1, cf. (Ireland and Rosen, 1982),

Proposition 16.1.2. This yields the bound. We bounded 1/𝑁𝜂, 1/𝐾𝜂 and 1/(𝑁𝐶)𝜂−1 by 1.

Remark 5.4.5 (Lower bounds). In order to interpret the regret obtained in the previous theo-

rem, assuming Gaussian rewards in this remark, it is useful to note that running the centralized

UCB algorithm for 𝑇𝑁 steps incurs a regret bounded above by
∑︀

𝑘:Δ𝑘>0
𝜎2 ln(𝑇𝑁)

Δ𝑘
+
∑︀𝐾

𝑘=1Δ𝑘, up

to a constant. Moreover, running 𝑁 separate instances of UCB at each node without allowing

communication incurs a regret of 𝑅(𝑇 ) .
∑︀

𝑘:Δ𝑘>0
𝑁𝜎2 ln(𝑇 )

Δ𝑘
+𝑁

∑︀𝐾
𝑘=1Δ𝑘. On the other hand,

the following is an asymptotic lower bound for any consistent centralized policy (Lai and Rob-

bins, 1985): lim inf
𝑇→∞

𝑅(𝑇 )
ln𝑇 ≥

∑︀
𝑘:Δ𝑘>0

2𝜎2

Δ𝑘
. Thus, we see that the regret obtained in Theorem 5.4.2
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improves significantly the dependence on 𝑁 of the regret with respect to the trivial algorithm that

does not involve communication, and that it is, up to constants, asymptotically optimal in terms

of 𝑇 , with constant 𝑁 and 𝐾. Since in the first iteration of this problem 𝑁 arms have to be

pulled and there is no prior information on the arms’ distribution, any asymptotically optimal

algorithm in terms of 𝑁 and 𝐾 must pull Θ(𝑁𝐾 + 1) times each arm, yielding expected regret of

at least the one of the uniform policy:
(︀
𝑁
𝐾 + 1

)︀∑︀𝐾
𝑘=1Δ𝑘, up to a constant.

To sum up, by the lower bound above and the latter argument, we have the following lower

bounds for the problem we consider, where 𝑜(·) in the first inequality is taken with respect to 𝑇

only:

𝑅(𝑇 ) &
(︁ ∑︁
𝑘:Δ𝑘>0

𝜎2

Δ𝑘

+ 𝑜(1)
)︁
ln(𝑇 ), 𝑅(𝑇 ) &

(︁(︁𝑁
𝐾

+ 1
)︁ 𝐾∑︁
𝑘=1

Δ𝑘

)︁
.

The regret obtained in Theorem 5.4.2 is asymptotically optimal with respect to 𝑇 , as it matches

the first inequality, for constant 𝑁 and 𝐾. With respect to the second one, our theorem is optimal

in terms of 𝑁 and 𝐾 up to at most a factor of min(𝐾,𝑁) ln(𝑁)/
√︀
ln(1/|𝜆2|). Closing this gap

is an interesting open problem. We conjecture it would require improving the lower bound.

Remark 5.4.6 (Comparison with previous work). We will compare DDUCB using the un-

accelerated protocol versus coopUCB and coopUCB2, (Landgren, Srivastava, and Leonard, 2019a;

Landgren, Srivastava, and Leonard, 2019b) in terms of regret bounds. Note that if |𝜆2| > 1/𝑒,

our regret bound for the accelerated protocol is even better than the one for the unaccelerated

protocol. We start with coopUCB. One can obtain from (Landgren, Srivastava, and Leonard,

2019b) that coopUCB, when using ln(𝑡𝑁) in the upper confidence bound satisfies the regret bound

𝑅(𝑇 ) ≤ 𝐴+𝐵
∑︀𝐾

𝑘=1Δ𝑘, where

𝐴
def
=

∑︁
𝑘:Δ𝑘>0

𝑁∑︁
𝑗=1

8𝛾𝜎2(1 + 𝜀𝑗𝑐)

𝑁Δ𝑘

ln(𝑇𝑁), 𝐵
def
= 𝑁

(︁ 𝛾

𝛾 − 1
+
√
𝑁

𝑁∑︁
𝑗=2

|𝜆𝑗 |
1− |𝜆𝑗 |

)︁
.

Here, 𝛾 > 1 is an exploration parameter that the algorithm receives as input and 𝜀𝑗𝑐 is a non-

negative graph-dependent value, which is only 0 when the graph is a complete graph and is poten-

tially large in general. Thus, 𝐴 is at least
∑︀

𝑘:Δ𝑘>0
8𝜎2 ln(𝑇𝑁)

Δ𝑘
. Hence, up to a graph-independent

constant, 𝐴 is always greater than the first summand in the regret of our algorithm in Theo-

rem 5.4.2. Note that 𝛾
𝛾−1 ≥ 1 and 1

1−|𝜆2|
≥ 1

ln(|𝜆2|−1)
so

𝐵 ≥ 𝑁

(︃
1 +

𝜆
′
2

ln(
√
𝑁/𝜆

′
2)

)︃
,

where 𝜆
′
2

def
=
√
𝑁 |𝜆2| ∈ [0,

√
𝑁). The factor multiplying

∑︀𝐾
𝑘=1Δ𝑘 in the second summand in

Theorem 5.4.2 is 𝑁 ln𝑁/ ln(1/|𝜆2|) ≤ 2𝐵, since the inequality below holds.

2𝐵 ≥ 2𝑁
(︁
1 +

𝜆
′
2

ln(
√
𝑁/𝜆

′
2)

)︁
≥ 𝑁 ln𝑁

ln(
√
𝑁/𝜆

′
2)
⇔ ln𝑁 − 2 ln(𝜆

′
2) + 2𝜆

′
2 ≥ ln𝑁.
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In the case of a complete graph, the problem reduces to a centralized batched bandit problem, in

which 𝑁 actions are taken at each time step (Perchet et al., 2015). The communication in this

case is trivial: just send the obtained rewards to your neighbors. So not surprisingly our work and

(Landgren, Srivastava, and Leonard, 2019b) incur the same regret in such a case. However, the

previous reasoning proves that for every graph our asymptotic regret is never worse and for many

graphs we get substantial improvement. Depending on the graph, 𝐴 and 𝐵 can be much greater

than the lower bound we have used for both of them for comparison purposes. We show in the

following that in the case of a cycle graph with a natural communication matrix, these two parts

are substantially worse in (Landgren, Srivastava, and Leonard, 2019b), namely Θ(𝑁2) versus

Θ(1) and Θ(𝑁7/2) versus Θ(𝑁2 log𝑁) for the term multiplying
∑︀

𝑘:Δ𝑘>0 𝜎
2 ln(𝑇𝑁)/Δ𝑘 in 𝐴

and for 𝐵, respectively. In general, the algorithm we propose presents several improvements with

respect to coopUCB. We get a graph-independent value multiplying ln(𝑇𝑁) in the first summand

of the regret whereas 𝐴 contains the 1+ 𝜀𝑗𝑐 graph-dependent values. In 𝐵, just the sum 𝑁( 𝛾
𝛾−1 +√

𝑁
|𝜆2|

1−|𝜆2|
) is of greater order than our second summand. Moreover, 𝐵 contains other terms

depending on the eigenvalues 𝜆𝑗 for 𝑗 ≥ 3. We get this while using less global information about

the graph. This is of interest for decentralization purposes. It has computational implications as

well, since in principle the computation of 𝜀𝑗𝑐 needs the entire set of eigenvalues and eigenvectors of

𝑃 . Now we focus on coopUCB2, which only needs 𝑁 and does not have to estimate 𝜆2. Its regret

bound 𝐴2+𝐵2
∑︀𝐾

𝑘=1Δ𝑘 depends on the exploration function 𝑓(𝑇 ), that has to be sublogarithmic.

𝐴2 can be made graph-independent if 𝑓 is chosen to be 𝑔(𝑡)/𝑁 for sublogarithmic 𝑔. The original

paper does not mention this fact, but checking the proof in (Landgren, Srivastava, and Leonard,

2019a) we note that 𝑓(𝑇 ) can depend on 𝑁 so we can obtain such graph-independent bound. In

any case, it is always 𝐴2 & our factor in Theorem 5.4.2. And on the other hand 𝐵2 is at least

𝐵 plus the superexponential term 𝑓−1(𝜀𝑘𝑐 ). Or 𝑔−1(𝑁𝜀𝑘𝑐 ), if the other approach is used.

We present the example with the cycle graph now. If we take 𝑃 to be symmetric, it is∑︀𝑁
𝑗=1

𝜀𝑗𝑐
𝑁 =

∑︀𝑁
𝑗=2

𝜆𝑗
2

1−𝜆𝑗2
. Consider the graph 𝐺 to be a cycle with an odd number of nodes

and greater than 1, and take as 𝑃 the matrix such that 𝑃𝑖𝑗 = 1/2 if 𝑖 = 𝑗 ± 1 mod 𝑁 and

𝑃𝑖𝑗 = 0 otherwise. Then 𝑃 is a circulant matrix and their eigenvalues are cos (2𝜋𝑗/𝑁), 𝑗 =

0, 1, . . . , 𝑁 − 1. Then 𝜆2
2

1−𝜆22
= cot2

(︀
2𝜋
𝑁

)︀
≥ 𝑁2

4𝜋2 − 2
3 and 𝜆3

2

1−𝜆32
= cot2

(︀
4𝜋
𝑁

)︀
≥ 𝑁2

16𝜋2 − 2
3 .

As a consequence, 𝐵 is greater than the corresponding summand in Theorem 5.4.2 in our

bound by at least a summand which is Θ(𝑁7/2). On the other hand our summand is Θ(𝑁2 log𝑁),

when using (5.4.4) and Θ(𝑁3 log𝑁) when using (5.4.2). In addition, 𝐴 is greater than the

corresponding summand in Theorem 5.4.2 by a factor of Θ(𝑁2). The corresponding factor in

coopUCB2 is of the same order as with DDUCB, but the 𝑇 independent summand in coopUCB2

is superexponential in 𝑁 in contrast to our Θ(𝑁2 log𝑁) or Θ(𝑁3 log𝑁). The bounds above can

be proven by a Taylor expansion: 𝑥2 cot2
(︀
1
𝑥

)︀
= 1 − 2𝑥2

3 + 𝜉4

15 , for 𝑥 > 0 and 𝜉 ∈ [0, 𝑥]. So

cot2
(︀
1
𝑥

)︀
≥ 1

𝑥2
− 2

3 . These are the latter for 𝑥 = 𝑁
2𝜋 and 𝑥 = 𝑁

4𝜋 .

We note that in (Landgren, Srivastava, and Leonard, 2019a; Landgren, Srivastava, and

Leonard, 2019b), the authors used the time step ln(𝑡) instead of ln(𝑡𝑁) to define the upper con-
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fidence bound. We compared both algorithms in the case in which ln(𝑡𝑁) is used. A similar

comparison holds for the other case.

Remark 5.4.7 (Variants of DDUCB). The algorithm can be modified slightly to obtain better

estimations of 𝜈(𝑡,𝑘)/𝑁 and 𝑛(𝑡,𝑘)/𝑁 , which implies the regret is improved. The easiest (and

recommended) modification is the following. While waiting for the vectors 𝛽(𝑖) and 𝑏(𝑖), 𝑖 =

1, . . . 𝑁 to be mixed, each agent 𝑖 adds to the variables 𝛼(𝑖) and 𝑎(𝑖) the information of the

pulls that are done times 1/𝑁 . The variable 𝑠 accounting for the time step has to be modified

accordingly. It contains the number of pulls made to obtain the approximations of 𝛼(𝑖) and 𝑎(𝑖), so

it needs to be increased by one when adding one extra reward. This corresponds to uncommenting

Lines 13-14 in Algorithm 9. Since the values of 𝛼(𝑖) and 𝑎(𝑖) are overwritten after the for loop,

the assignment of 𝑠 which is after the loop remains unchanged. Note that if the lines are not

uncommented then each time the for loop is executed the 𝐶 pulls that are done by an agent are

taken with respect to the same arm. Another variant that would provide better estimations, while

keeping the communication cost 𝑂(𝐾) would consist of also sending the information of the new

pull, 𝜋(𝑡,𝑘)𝑖 and 𝑝(𝑡,𝑘)𝑖 , to the neighbors of 𝑖, receiving their respective values of their new pulls and

adding these values to 𝛼(𝑖) and 𝑎(𝑖) multiplied by 1/𝑁 , respectively. Our analysis of the algorithm

presents no modifications for the sake of clarity of exposition. The same asymptotic upper bound

on the regret in Theorem 5.4.2 can be computed for these two variations.

We can vary the communication rate with some trade-offs. On the one hand, we can mix

values of 𝛿(𝑖) and 𝑑(𝑖) at each iteration of the for loop, in an unaccelerated way and with (5.4.2)

(see Algorithm 9, Line 15) to get even more precise estimations. In such a case, we could use 𝛿(𝑖)

and 𝑑(𝑖) to compute the upper confidence bounds instead of 𝛼(𝑖) and 𝑎(𝑖). However, that approach

cannot benefit from using the information from local pulls obtained during the stage. On the

other hand, if each agent could not communicate 2𝐾 values per iteration, corresponding to the

mixing step in Line 11, the algorithm can be slightly modified to account for it at the expense

of incurring greater regret. Suppose each agent can only communicate 𝐿 values to her neighbors

per iteration. Let 𝐸 be ⌈2𝐾𝐶/𝐿⌉. If each agent runs the algorithm in stages of 𝐸 iterations,

ensuring to send each element of 𝛽(𝑖) and 𝑏(𝑖) exactly 𝐶 times and using the mixing step 𝐶 times,

then the bounds in Theorem 5.4.2, substituting 𝐶 by 𝐸, still hold. Again, in the asymptotic

bound, 𝑁 ln𝑁/
√︀
ln(1/|𝜆2|) would be substituted by 𝑁𝐸. In each iteration, agents have to send

values corresponding to the same entries of 𝛽(𝑖) or 𝑏(𝑖). The factor of 𝐶 in the second summand

of the regret accounts for the number of rounds of delay since a reward is obtained until it is used

to compute upper confidence bounds. If we decrease the communication rate and compensate it

with a greater delay, the approximations in 𝛼(𝑖) and 𝑎(𝑖) satisfy the same properties as in the

original algorithm. Only the second summand in the regret increases because of an increment of

the delay. Also note that in practice we send a finite number of bits and the error incurred by

the approximation can be encapsulated in our 𝜀 parameter. And we know how it will affect the

regret bound.
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Remark 5.4.8 (Estimation of the number of nodes). The total number of nodes can be

estimated at the beginning of the algorithm, with high probability. Given a value per node, the

gossip protocol allows for the computation at each node of the average of those values. If a node

starts with a number 𝑢 ̸= 0 and the rest of the nodes start with the value 0, then using the

gossip protocol after some iterations makes the nodes hold an approximation of the value 𝑢/𝑁 .

The approximation improves exponentially with the number of steps and it does not depend on

𝑁 , but on the spectral gap. See (5.4.3), for instance. To recover 𝑁 , the value 𝑢 is broadcast

as well at the same time the values are being mixed, so at each time step a node receives from

her neighbors the mixing value and 𝑢. In order to compute this protocol in a decentralized way,

we make every node compute a number 𝑢𝑖 at random and they start broadcasting and mixing it

separately. However, during the mixing process we make each node only keep and mix the value

corresponding to the minimum 𝑢𝑖 so at the end of this process each node only contains 𝑢 = min𝑢𝑖

and the approximate value of 𝑢/𝑁 , if no two nodes started with min𝑢𝑖, which only occurs with

low probability. The procedure can be repeated to increase the probability of success.

The approximations of 𝑁 can be broadcast and nodes could use the minimum and maximum

as lower and upper bounds on 𝑁 . The algorithm really only needs upper and lower bounds on 𝑁 .

The delay constant 𝐶 would be computed with the upper bound on 𝑁 and the upper confidence

bound would be computed using the lower bound, which translates to using a greater exploration

parameter 𝜂. Since our analysis was done in general for the delay and the exploration parameters,

the bounds in Theorem 5.4.2 hold, substituting the delay and exploration parameters by the new

values.

We can also obtain an instance independent regret bound, which we present in the following

theorem.

Theorem 5.4.9 (Instance Independent Regret Analysis). The regret achieved by the DDUCB

algorithm is

𝑅(𝑇 ) .
√︀
𝐾𝑇𝑁𝜎2 ln(𝑇𝑁) +𝐾

𝑁Λ ln𝑁√︀
ln(1/|𝜆2|)

,

where Λ is an upper bound on the gaps Δ𝑘, 𝑘 = 1, . . . ,𝐾. Here, . does not only omit constants

but also 𝜂 and 𝜀.

Proof Define𝐷1 as the set of arms such that their respective gaps are all less than
√︁

𝐾
𝑇𝑁 𝜎

2 ln(𝑇𝑁)

and 𝐷2 as the set of arms that are not in 𝐷1. Then we can bound the regret incurred by pulling

arms in 𝐷1, in the following way

∑︁
𝑘∈𝐷1

E[𝑛(𝑇 ,𝑘)]Δ𝑘 ≤
√︂

𝐾

𝑇𝑁
𝜎2 ln(𝑇𝑁)

∑︁
𝑘∈𝐷1

E[𝑛(𝑇 ,𝑘)] ≤
√︀
𝐾𝑇𝑁𝜎2 ln(𝑇𝑁).
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Using Theorem 5.4.2 we can bound the regret obtained by the pulls done to arms in 𝐷2:∑︁
𝑘∈𝐷2

E[𝑛(𝑇 ,𝑘)]Δ𝑘 .
∑︁
𝑘∈𝐷2

𝜎2 ln(𝑇𝑁)

Δ𝑘

+
𝑁 ln(𝑁)√︀
ln(1/|𝜆2|)

Δ𝑘

≤
∑︁
𝑘∈𝐷2

√︂
𝑇𝑁𝜎2 ln(𝑇𝑁)

𝐾
+

𝑁Λ ln(𝑁)√︀
ln(1/|𝜆2|)

≤
√︀
𝐾𝑇𝑁𝜎2 ln(𝑇𝑁) +𝐾

𝑁Λ ln(𝑁)√︀
ln(1/|𝜆2|)

.

Adding the two bounds above yields the result.

5.5 Experiments

We show that the algorithm proposed in this work, DDUCB, does not only enjoy a better

theoretical regret guarantee but it also performs better in practice. The code for the experiments

in this work can be found at https://github.com/damaru2/decentralized-bandits. We have

observed that the accelerated method performs well with some fixed values for the exploration

parameter 𝜂 and the parameter 𝜀 that measures the precision of the mixing after a stage. We

use these values, that are 𝜂 = 2, 𝜀 = 1/22. On the other hand, the constant 𝐶 that appears

in the unaccelerated method is usually excessively large, so it is convenient to heuristically

decrease it, which corresponds to using a different value of 𝜀. We set 𝜀 so the value of 𝐶 for

the unaccelerated method is the same as the accelerated one. We have used a modification of

DDUCB, that we recommend, consisting of adding to the variables 𝛼(𝑖) and 𝑎(𝑖) the values 1/𝑁

times the information of the pulls that are done by agent 𝑖, while waiting for the vectors 𝛽(𝑖)

and 𝑏(𝑖) to be mixed. This modification adds extra information that is available so it is always

convenient to use it.

We tuned 𝛾, the exploration parameter of coopUCB and coopUCB2 (Landgren, Srivastava,

and Leonard, 2019a), to get best results for that algorithm and plot the execution for the best

choice of 𝛾, which was 𝛾 = 0.0001. We also use 𝛾 = 2 for comparison purposes. In Fig. 5.1

one can observe that after a few stages DDUCB algorithms learn which the best arm with high

precision is and the regret curve that is observed afterwards shows an almost horizontal behavior.

After 10000 iterations, coopUCB not only accumulates a greater regret but the slope indicates

that it still has not learned effectively which arm is the best. In some instances, for coopUCB2

and when its optimal exploration parameter is set, it can start having better regret than DDUCB,

but even in that case it becomes worse than DDUCB after some iterations.

The distributions of the arms in the bandit problem used in the experiments are Gaussian

with variance 1. There is one arm with mean 1 and 16 other arms with mean 0.8. We have

executed the algorithms for cycle graphs of size 100 and 200 and for square grids of size 100

and 225. Each algorithm for each setting was executed 10 times. Average regret is shown in Fig

5.1. The experiments we present are representative of the regret behavior we have observed in a

greater variety of scenarios upon different choices of means, number of arms and variance. Using
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(a) (b)

(c) (d)

Figure 5.1: Simulation of DDUCB, coopUCB, and coopUCB2 for cycle graphs of (a) 100 nodes
and (b) 200 nodes. Simulation of DDUCB, coopUCB, and coopUCB2 for square grids of (c) 100
nodes and (d) 225 nodes. Recall that, in every case, the number of actions that are selected
equals the number of rounds times the number of nodes.

different exploration parameters for coopUCB or coopUCB2 did not make it show a behavior as

effective as the one observed for DDUCB.

The matrix 𝑃 was chosen according to (Duchi, Agarwal, and Wainwright, 2012). That is,

we define the graph Laplacian as ℒ = 𝐼 −𝐷−1/2𝐴𝐷−1/2, where 𝐴 is the adjacency matrix of the

communication graph 𝐺 and 𝐷 is a diagonal matrix such that 𝐷𝑖𝑖 contains the degree of node 𝑖.

Then for regular graphs, if we call 𝛿 the common degree of every node, we pick 𝑃 = 𝐼 − 𝛿
𝛿+1ℒ.

For non regular graphs, like the square grid we used, letting 𝛿max be the maximum degree of the

nodes we pick 𝑃 = 𝐼− 1
𝛿max+1𝐷

1/2ℒ𝐷1/2. These matrices always satisfy the assumptions needed

for a communication matrix. Building the matrix only requires the mild assumption of knowing

an upper bound on 𝛿max. And the spectral gap can be estimated (Franceschelli et al., 2013).

For reference, for our choice of 𝑃 , the inverse of the spectral graph of the cycle is 𝑂(𝑁2) and it
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is 𝑂(𝑁) for the grid (Duchi, Agarwal, and Wainwright, 2012). Note it is 𝑂(1) for an expander

graph.
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Chapter 6

Conclusion

In this research, we explored several problems in optimization and online learning. A key

element in all of our solutions was the application and extensions of accelerated optimization

techniques. We overviewed some ideas that show that one very fruitful point of view for accel-

eration is the use of online learning algorithms, like Mirror Descent or Follow the Regularized

Leader, for the estimation of lower bounds on the function at the same time that one exploits

other properties of the function to jointly minimize the duality gap as fast as possible. Indeed,

this was a crucial tool for our algorithms.

Accelerated frameworks and other optimization techniques have allowed to generalize classical

optimization solutions with a black-box gradient oracle to obtain algorithms that work in a variety

of settings, like stochastic, composite, finite sum, non-convex, universal algorithms, to name a

few. These general algorithms have numerous applications and sometimes the right formulation

and treatment of our problems allows to solve a part of them by making use of these algorithms,

like what we did in the decentralized bandit problem in Chapter 5. The development of new more

general optimization algorithms with a black-box gradient oracle is an active and fruitful area

of research. We contributed to this direction in Chapter 3, by extending accelerated techniques

to a constrained non-convex problem that, as we showed, can be used for the optimization of

geodesically convex functions defined in Riemannian manifolds. However, we would argue that

as we gain more understanding about how to obtain general solutions, the next frontier is in

the use of particular structures of our problems, i.e., in opening the black box. Combining

these structures with the knowledge of general optimization techniques, we may obtain new

tools and developments. In Chapter 4 we obtained a solution to our problem by following this

philosophy, which allowed to obtain an algorithm with several desirable properties in this setting:

fast optimization due to acceleration, determinism, distribution and width-independence.

Finally, a word on the format of this thesis. For most notations appearing in this dissertation,

we included non-intrusive links pointing to their definitions. Mathematics is often read non-

linearly or requires contexts that, frequently, are inconveniently scattered. We need more ways

and technological tools to facilitate the search, understanding, and dissemination of research and

its ideas. We hope this concept helps moving in this direction and we hope to see it used in more

works or that it inspires other support structures or tools.
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