
Decentralized Cooperative Stochastic Multiarmed
Bandits

David Martínez-Rubio 1 Varun Kanade 1 Patrick Rebeschini 2

1Department of Computer Science - University of Oxford

2Department of Statistics - University of Oxford

March 8 2019

Stochastic Multiarmed Bandits

I An agent chooses iteratively an arm among K ∈ N possible arms and
receives a reward. This happens for T time steps.

I The goal is to get cumulative reward as close as possible to the reward she
could have obtained with the best fixed action, in hindsight.

I In the stochastic version, rewards are sampled from a distribution which is
arm-dependent. In the adversarial one, rewards are set by an adversary.

I Optimal algorithms have been developed for both the stochastic and the
adversarial versions, e.g. the Upper Confidence Bound algorithm (UCB) for
the stochastic version.

I The goal can be rephrased in terms of minimizing regret:

R(T) = sup
a

T∑
t=1

rt(a)−
T∑
t=1

rt(at)

In the stochastic case, in expectation, if ∆k is the difference between the
best mean and the mean for arm k:

R(T) = E

[
T∑
t=1

∆It

]
.

1 23

https://docs.google.com/presentation/d/11ie8IL3vuo8SSUJ-5CIzIhix_isvHuOrveEI8dLQNzA/edit#slide=id.g363ffeef47_0_31

Stochastic Multiarmed Bandits

I An agent chooses iteratively an arm among K ∈ N possible arms and
receives a reward. This happens for T time steps.

I The goal is to get cumulative reward as close as possible to the reward she
could have obtained with the best fixed action, in hindsight.

I In the stochastic version, rewards are sampled from a distribution which is
arm-dependent. In the adversarial one, rewards are set by an adversary.

I Optimal algorithms have been developed for both the stochastic and the
adversarial versions, e.g. the Upper Confidence Bound algorithm (UCB) for
the stochastic version.

I The goal can be rephrased in terms of minimizing regret:

R(T) = sup
a

T∑
t=1

rt(a)−
T∑
t=1

rt(at)

In the stochastic case, in expectation, if ∆k is the difference between the
best mean and the mean for arm k:

R(T) = E

[
T∑
t=1

∆It

]
.

1 23

https://docs.google.com/presentation/d/11ie8IL3vuo8SSUJ-5CIzIhix_isvHuOrveEI8dLQNzA/edit#slide=id.g363ffeef47_0_31

Stochastic Multiarmed Bandits

I An agent chooses iteratively an arm among K ∈ N possible arms and
receives a reward. This happens for T time steps.

I The goal is to get cumulative reward as close as possible to the reward she
could have obtained with the best fixed action, in hindsight.

I In the stochastic version, rewards are sampled from a distribution which is
arm-dependent. In the adversarial one, rewards are set by an adversary.

I Optimal algorithms have been developed for both the stochastic and the
adversarial versions, e.g. the Upper Confidence Bound algorithm (UCB) for
the stochastic version.

I The goal can be rephrased in terms of minimizing regret:

R(T) = sup
a

T∑
t=1

rt(a)−
T∑
t=1

rt(at)

In the stochastic case, in expectation, if ∆k is the difference between the
best mean and the mean for arm k:

R(T) = E

[
T∑
t=1

∆It

]
.

1 23

https://docs.google.com/presentation/d/11ie8IL3vuo8SSUJ-5CIzIhix_isvHuOrveEI8dLQNzA/edit#slide=id.g363ffeef47_0_31

Stochastic Multiarmed Bandits

I An agent chooses iteratively an arm among K ∈ N possible arms and
receives a reward. This happens for T time steps.

I The goal is to get cumulative reward as close as possible to the reward she
could have obtained with the best fixed action, in hindsight.

I In the stochastic version, rewards are sampled from a distribution which is
arm-dependent. In the adversarial one, rewards are set by an adversary.

I Optimal algorithms have been developed for both the stochastic and the
adversarial versions, e.g. the Upper Confidence Bound algorithm (UCB) for
the stochastic version.

I The goal can be rephrased in terms of minimizing regret:

R(T) = sup
a

T∑
t=1

rt(a)−
T∑
t=1

rt(at)

In the stochastic case, in expectation, if ∆k is the difference between the
best mean and the mean for arm k:

R(T) = E

[
T∑
t=1

∆It

]
.

1 23

https://docs.google.com/presentation/d/11ie8IL3vuo8SSUJ-5CIzIhix_isvHuOrveEI8dLQNzA/edit#slide=id.g363ffeef47_0_31

UCB

The UCB algorithm is an optimal algorithm for the multiarmed stochastic
bandits problem. Fix a time step t and define:
I µkt := empirical mean observed for arm k.
I nkt := number of times arm k was pulled.
I η:= exploration parameter > 1.
I It:= action played at time t.

I UCBk := µkt +
√

2ησ2 ln t
nkt

.

Then UCB picks the arm that maximizes UCBk:

It = argmaxk∈[K] UCBk.

2 23

Decentralized Computation

I The decentralization may
be an inherent restriction
of the problem, as is the
case in packet routing or
sensor networks, massive
ad placement. It could be
a choice made to improve
the total running time.

I Focus should be
graph-dependent
algorithms, so we can cover
the case in which we
design the network and the
case in which the network
is a restriction.

3 23

Decentralized Computation

I The decentralization may
be an inherent restriction
of the problem, as is the
case in packet routing or
sensor networks, massive
ad placement. It could be
a choice made to improve
the total running time.

I Focus should be
graph-dependent
algorithms, so we can cover
the case in which we
design the network and the
case in which the network
is a restriction.

3 23

Question

How do we solve decentralized bandit problems?

The aim is to:
I Get regret as close as possible to the best regret attainable with a

centralized algorithm.
I Consider the batched bandit problem as a baseline.
I Assume as little non-local information as possible.

Adversarial case:
I No communication case. Regret incurred if separate optimal algorithms

are run: N
√
KT .

I A lower bound: N
√
T .

I There is an algorithm achieving regret N(
√
K1/2T logK +

√
K log T) (?).

4 23

Question

How do we solve decentralized bandit problems?

The aim is to:

I Get regret as close as possible to the best regret attainable with a
centralized algorithm.

I Consider the batched bandit problem as a baseline.
I Assume as little non-local information as possible.

Adversarial case:
I No communication case. Regret incurred if separate optimal algorithms

are run: N
√
KT .

I A lower bound: N
√
T .

I There is an algorithm achieving regret N(
√
K1/2T logK +

√
K log T) (?).

4 23

Question

How do we solve decentralized bandit problems?

The aim is to:
I Get regret as close as possible to the best regret attainable with a

centralized algorithm.

I Consider the batched bandit problem as a baseline.
I Assume as little non-local information as possible.

Adversarial case:
I No communication case. Regret incurred if separate optimal algorithms

are run: N
√
KT .

I A lower bound: N
√
T .

I There is an algorithm achieving regret N(
√
K1/2T logK +

√
K log T) (?).

4 23

Question

How do we solve decentralized bandit problems?

The aim is to:
I Get regret as close as possible to the best regret attainable with a

centralized algorithm.
I Consider the batched bandit problem as a baseline.

I Assume as little non-local information as possible.

Adversarial case:
I No communication case. Regret incurred if separate optimal algorithms

are run: N
√
KT .

I A lower bound: N
√
T .

I There is an algorithm achieving regret N(
√
K1/2T logK +

√
K log T) (?).

4 23

Question

How do we solve decentralized bandit problems?

The aim is to:
I Get regret as close as possible to the best regret attainable with a

centralized algorithm.
I Consider the batched bandit problem as a baseline.
I Assume as little non-local information as possible.

Adversarial case:
I No communication case. Regret incurred if separate optimal algorithms

are run: N
√
KT .

I A lower bound: N
√
T .

I There is an algorithm achieving regret N(
√
K1/2T logK +

√
K log T) (?).

4 23

Question

How do we solve decentralized bandit problems?

The aim is to:
I Get regret as close as possible to the best regret attainable with a

centralized algorithm.
I Consider the batched bandit problem as a baseline.
I Assume as little non-local information as possible.

Adversarial case:
I No communication case. Regret incurred if separate optimal algorithms

are run: N
√
KT .

I A lower bound: N
√
T .

I There is an algorithm achieving regret N(
√
K1/2T logK +

√
K log T) (?).

4 23

Gossip communication

I Nodes of a network send messages only to their neighbors.
I Many decentralized problems can be reduced to approximate averaging

(averaging gradients for optimization, averaging samples from a
distribution).

I Compute iteratively a weighted average of your value and the ones sent by
your neighbors. If x ∈ RN contains the values of the nodes, this operation
is Px, for a communication matrix P . We just need P s to converge to
11>/N .

I Properties of P :
I Supported on graph.
I P1 = 1; 1>P = 1>; |λ2| < 1

⇐⇒ P s −−−→
s→∞

11>/N (?)
I For acceleration eigenvalues must be real.

5 23

Gossip communication

I Nodes of a network send messages only to their neighbors.
I Many decentralized problems can be reduced to approximate averaging

(averaging gradients for optimization, averaging samples from a
distribution).

I Compute iteratively a weighted average of your value and the ones sent by
your neighbors. If x ∈ RN contains the values of the nodes, this operation
is Px, for a communication matrix P . We just need P s to converge to
11>/N .

I Properties of P :
I Supported on graph.
I P1 = 1; 1>P = 1>; |λ2| < 1

⇐⇒ P s −−−→
s→∞

11>/N (?)
I For acceleration eigenvalues must be real.

5 23

Gossip communication

I Nodes of a network send messages only to their neighbors.
I Many decentralized problems can be reduced to approximate averaging

(averaging gradients for optimization, averaging samples from a
distribution).

I Compute iteratively a weighted average of your value and the ones sent by
your neighbors. If x ∈ RN contains the values of the nodes, this operation
is Px, for a communication matrix P . We just need P s to converge to
11>/N .

I Properties of P :
I Supported on graph.
I P1 = 1; 1>P = 1>; |λ2| < 1

⇐⇒ P s −−−→
s→∞

11>/N (?)
I For acceleration eigenvalues must be real.

5 23

Gossip communication

Graphs with smaller spectral gap will benefit less from decentralization.

Example: time speedup of the dual averaging optimization algorithm with
respect to non distributed computation is (?):

Graph Cycle Sq. Grid Random Geometric Graph Expander
Speedup Õ(1) Õ(

√
N) Õ(

√
N) ∗ Õ(N)

∗Speedup with high probability for a random geometric graph on [0, 1]2 with
connectivity radius Ω(

√
log1+ε n/n) (for any ε > 0).

6 23

Model and Problem

I N agents in a graph with communication matrix P .
I Same K-armed bandit problem at each node.
I T time steps.
I Reward distributions are subgaussian with proxy σ2 with means
µ1 ≥ µ2 ≥ · · · ≥ µK .

I Regret is defined as

R(T) = TNµ1 −E

[
T∑
t=1

N∑
i=1

µIt,i

]
=

K∑
k=1

∆kE
[
nkT
]
,

The expectation is taken with respect to the algorithm and the rewards.
I poly(K) values are allowed to be communicated at each time step.
I We want the algorithm to be decentralized: only N and an upper bound on

the spectral gap of P is assumed to be known to the agents, besides their
corresponding row of P .

7 23

Decentralized UCB?

UCBk := µkt +

√
2ησ2 ln t

nkt
.

UCB needs to compute µkt and nkt . In a decentralized setting could be
approximated with gossip communication. It is an averaging problem.

Difficulties of the adaptation to the decentralized setting:
1. New rewards are obtained at each time step, the average is not only of one

value per node.
2. We can only compute approximations of the averages.
3. It turns out that for getting good approximations we need to delay the

rewards given to the UCB algorithm.

8 23

Running Consensus

Running Consensus (?). Values sequentially added to the network
y1, . . . , yt ∈ RN (2K of these (µkt and nkt for k = 1, . . . ,K))

Running consensus approximation: xt+1 = Pxt + yt with x1 = 0
Problem: Poor approximation due to last-added values not sufficiently mixed

xt+1 = yt + Pyt−1 + · · ·︸ ︷︷ ︸
NOT well-mixed

+ · · ·+ P t−2y2 + P t−1y1︸ ︷︷ ︸
well-mixed

IDEA: Take decisions only based on well-mixed (delayed) information
I Use mixing to prescribe delay
I Delay does not increase regret much: τ -delay increases regret by τ

∑
k ∆k

Acceleration: Compute a polynomial of P that minimizes all eigenvalues but
λ1 = 1.
I Use rescaled Chebyshev polynomials.

9 23

Running Consensus

Running Consensus (?). Values sequentially added to the network
y1, . . . , yt ∈ RN (2K of these (µkt and nkt for k = 1, . . . ,K))

Running consensus approximation: xt+1 = Pxt + yt with x1 = 0

Problem: Poor approximation due to last-added values not sufficiently mixed

xt+1 = yt + Pyt−1 + · · ·︸ ︷︷ ︸
NOT well-mixed

+ · · ·+ P t−2y2 + P t−1y1︸ ︷︷ ︸
well-mixed

IDEA: Take decisions only based on well-mixed (delayed) information
I Use mixing to prescribe delay
I Delay does not increase regret much: τ -delay increases regret by τ

∑
k ∆k

Acceleration: Compute a polynomial of P that minimizes all eigenvalues but
λ1 = 1.
I Use rescaled Chebyshev polynomials.

9 23

Running Consensus

Running Consensus (?). Values sequentially added to the network
y1, . . . , yt ∈ RN (2K of these (µkt and nkt for k = 1, . . . ,K))

Running consensus approximation: xt+1 = Pxt + yt with x1 = 0
Problem: Poor approximation due to last-added values not sufficiently mixed

xt+1 = yt + Pyt−1 + · · ·︸ ︷︷ ︸
NOT well-mixed

+ · · ·+ P t−2y2 + P t−1y1︸ ︷︷ ︸
well-mixed

IDEA: Take decisions only based on well-mixed (delayed) information
I Use mixing to prescribe delay
I Delay does not increase regret much: τ -delay increases regret by τ

∑
k ∆k

Acceleration: Compute a polynomial of P that minimizes all eigenvalues but
λ1 = 1.
I Use rescaled Chebyshev polynomials.

9 23

Running Consensus

Running Consensus (?). Values sequentially added to the network
y1, . . . , yt ∈ RN (2K of these (µkt and nkt for k = 1, . . . ,K))

Running consensus approximation: xt+1 = Pxt + yt with x1 = 0
Problem: Poor approximation due to last-added values not sufficiently mixed

xt+1 = yt + Pyt−1 + · · ·︸ ︷︷ ︸
NOT well-mixed

+ · · ·+ P t−2y2 + P t−1y1︸ ︷︷ ︸
well-mixed

IDEA: Take decisions only based on well-mixed (delayed) information

I Use mixing to prescribe delay
I Delay does not increase regret much: τ -delay increases regret by τ

∑
k ∆k

Acceleration: Compute a polynomial of P that minimizes all eigenvalues but
λ1 = 1.
I Use rescaled Chebyshev polynomials.

9 23

Running Consensus

Running Consensus (?). Values sequentially added to the network
y1, . . . , yt ∈ RN (2K of these (µkt and nkt for k = 1, . . . ,K))

Running consensus approximation: xt+1 = Pxt + yt with x1 = 0
Problem: Poor approximation due to last-added values not sufficiently mixed

xt+1 = yt + Pyt−1 + · · ·︸ ︷︷ ︸
NOT well-mixed

+ · · ·+ P t−2y2 + P t−1y1︸ ︷︷ ︸
well-mixed

IDEA: Take decisions only based on well-mixed (delayed) information
I Use mixing to prescribe delay

I Delay does not increase regret much: τ -delay increases regret by τ
∑
k ∆k

Acceleration: Compute a polynomial of P that minimizes all eigenvalues but
λ1 = 1.
I Use rescaled Chebyshev polynomials.

9 23

Running Consensus

Running Consensus (?). Values sequentially added to the network
y1, . . . , yt ∈ RN (2K of these (µkt and nkt for k = 1, . . . ,K))

Running consensus approximation: xt+1 = Pxt + yt with x1 = 0
Problem: Poor approximation due to last-added values not sufficiently mixed

xt+1 = yt + Pyt−1 + · · ·︸ ︷︷ ︸
NOT well-mixed

+ · · ·+ P t−2y2 + P t−1y1︸ ︷︷ ︸
well-mixed

IDEA: Take decisions only based on well-mixed (delayed) information
I Use mixing to prescribe delay
I Delay does not increase regret much: τ -delay increases regret by τ

∑
k ∆k

Acceleration: Compute a polynomial of P that minimizes all eigenvalues but
λ1 = 1.
I Use rescaled Chebyshev polynomials.

9 23

Running Consensus

Running Consensus (?). Values sequentially added to the network
y1, . . . , yt ∈ RN (2K of these (µkt and nkt for k = 1, . . . ,K))

Running consensus approximation: xt+1 = Pxt + yt with x1 = 0
Problem: Poor approximation due to last-added values not sufficiently mixed

xt+1 = yt + Pyt−1 + · · ·︸ ︷︷ ︸
NOT well-mixed

+ · · ·+ P t−2y2 + P t−1y1︸ ︷︷ ︸
well-mixed

IDEA: Take decisions only based on well-mixed (delayed) information
I Use mixing to prescribe delay
I Delay does not increase regret much: τ -delay increases regret by τ

∑
k ∆k

Acceleration: Compute a polynomial of P that minimizes all eigenvalues but
λ1 = 1.

I Use rescaled Chebyshev polynomials.

9 23

Running Consensus

Running Consensus (?). Values sequentially added to the network
y1, . . . , yt ∈ RN (2K of these (µkt and nkt for k = 1, . . . ,K))

Running consensus approximation: xt+1 = Pxt + yt with x1 = 0
Problem: Poor approximation due to last-added values not sufficiently mixed

xt+1 = yt + Pyt−1 + · · ·︸ ︷︷ ︸
NOT well-mixed

+ · · ·+ P t−2y2 + P t−1y1︸ ︷︷ ︸
well-mixed

IDEA: Take decisions only based on well-mixed (delayed) information
I Use mixing to prescribe delay
I Delay does not increase regret much: τ -delay increases regret by τ

∑
k ∆k

Acceleration: Compute a polynomial of P that minimizes all eigenvalues but
λ1 = 1.
I Use rescaled Chebyshev polynomials.

9 23

Delayed average: a small-variance estimator

I If C =
⌈

ln(N/ε)
ln(1/|λ2|)

⌉
we have

∥∥PC − 1T1/N∥∥
2
≤ ε/N , (?).

I By rescaling Chebyshev’s polynomials we can find the polynomial qs(x) of
degree s with minimum supremum in the interval [−|λ2|, |λ2|] that satisfies
qs(1) = 1, similarly as in (?). So qs(P)yt can be computed with s gossip
iterations.

I If C =

⌈
ln(N/ε)√
ln(1/|λ2|)

⌉
we have

∥∥qC(P)− 1T1/N
∥∥

2
≤ ε/N .

I Run the algorithm in stages of size C.
I Use well mixed information to decide the pull.
I Rewards obtained in the previous stage mix using the running consensus

protocol.
I Keep rewards of current stage in a third variable for mixing them in the

next one.
I At the end of the stage add the recently well mixed rewards to the rest of

well mixed rewards.

10 23

Delayed average: a small-variance estimator

I If C =
⌈

ln(N/ε)
ln(1/|λ2|)

⌉
we have

∥∥PC − 1T1/N∥∥
2
≤ ε/N , (?).

I By rescaling Chebyshev’s polynomials we can find the polynomial qs(x) of
degree s with minimum supremum in the interval [−|λ2|, |λ2|] that satisfies
qs(1) = 1, similarly as in (?). So qs(P)yt can be computed with s gossip
iterations.

I If C =

⌈
ln(N/ε)√
ln(1/|λ2|)

⌉
we have

∥∥qC(P)− 1T1/N
∥∥

2
≤ ε/N .

I Run the algorithm in stages of size C.

I Use well mixed information to decide the pull.
I Rewards obtained in the previous stage mix using the running consensus

protocol.
I Keep rewards of current stage in a third variable for mixing them in the

next one.
I At the end of the stage add the recently well mixed rewards to the rest of

well mixed rewards.

10 23

Delayed average: a small-variance estimator

I If C =
⌈

ln(N/ε)
ln(1/|λ2|)

⌉
we have

∥∥PC − 1T1/N∥∥
2
≤ ε/N , (?).

I By rescaling Chebyshev’s polynomials we can find the polynomial qs(x) of
degree s with minimum supremum in the interval [−|λ2|, |λ2|] that satisfies
qs(1) = 1, similarly as in (?). So qs(P)yt can be computed with s gossip
iterations.

I If C =

⌈
ln(N/ε)√
ln(1/|λ2|)

⌉
we have

∥∥qC(P)− 1T1/N
∥∥

2
≤ ε/N .

I Run the algorithm in stages of size C.
I Use well mixed information to decide the pull.

I Rewards obtained in the previous stage mix using the running consensus
protocol.

I Keep rewards of current stage in a third variable for mixing them in the
next one.

I At the end of the stage add the recently well mixed rewards to the rest of
well mixed rewards.

10 23

Delayed average: a small-variance estimator

I If C =
⌈

ln(N/ε)
ln(1/|λ2|)

⌉
we have

∥∥PC − 1T1/N∥∥
2
≤ ε/N , (?).

I By rescaling Chebyshev’s polynomials we can find the polynomial qs(x) of
degree s with minimum supremum in the interval [−|λ2|, |λ2|] that satisfies
qs(1) = 1, similarly as in (?). So qs(P)yt can be computed with s gossip
iterations.

I If C =

⌈
ln(N/ε)√
ln(1/|λ2|)

⌉
we have

∥∥qC(P)− 1T1/N
∥∥

2
≤ ε/N .

I Run the algorithm in stages of size C.
I Use well mixed information to decide the pull.
I Rewards obtained in the previous stage mix using the running consensus

protocol.

I Keep rewards of current stage in a third variable for mixing them in the
next one.

I At the end of the stage add the recently well mixed rewards to the rest of
well mixed rewards.

10 23

Delayed average: a small-variance estimator

I If C =
⌈

ln(N/ε)
ln(1/|λ2|)

⌉
we have

∥∥PC − 1T1/N∥∥
2
≤ ε/N , (?).

I By rescaling Chebyshev’s polynomials we can find the polynomial qs(x) of
degree s with minimum supremum in the interval [−|λ2|, |λ2|] that satisfies
qs(1) = 1, similarly as in (?). So qs(P)yt can be computed with s gossip
iterations.

I If C =

⌈
ln(N/ε)√
ln(1/|λ2|)

⌉
we have

∥∥qC(P)− 1T1/N
∥∥

2
≤ ε/N .

I Run the algorithm in stages of size C.
I Use well mixed information to decide the pull.
I Rewards obtained in the previous stage mix using the running consensus

protocol.
I Keep rewards of current stage in a third variable for mixing them in the

next one.

I At the end of the stage add the recently well mixed rewards to the rest of
well mixed rewards.

10 23

Delayed average: a small-variance estimator

I If C =
⌈

ln(N/ε)
ln(1/|λ2|)

⌉
we have

∥∥PC − 1T1/N∥∥
2
≤ ε/N , (?).

I By rescaling Chebyshev’s polynomials we can find the polynomial qs(x) of
degree s with minimum supremum in the interval [−|λ2|, |λ2|] that satisfies
qs(1) = 1, similarly as in (?). So qs(P)yt can be computed with s gossip
iterations.

I If C =

⌈
ln(N/ε)√
ln(1/|λ2|)

⌉
we have

∥∥qC(P)− 1T1/N
∥∥

2
≤ ε/N .

I Run the algorithm in stages of size C.
I Use well mixed information to decide the pull.
I Rewards obtained in the previous stage mix using the running consensus

protocol.
I Keep rewards of current stage in a third variable for mixing them in the

next one.
I At the end of the stage add the recently well mixed rewards to the rest of

well mixed rewards.

10 23

Pseudocode

11 23

Regret

[M.R., Kanade, Rebeschini ’19]

DDUCB incurs the following regret:
1. Accelerated communication:

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)√
ln(1/ |λ2|)

K∑
k=1

∆k.

2. Unaccelerated communication:

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)

ln(1/ |λ2|)

K∑
k=1

∆k.

The red term in both cases is NC, up to constants.
Acceleration needs less delay in the difficult regimes (|λ2| close to 1).

12 23

Interpretation of the regret

DDUCB (acceleration):

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)√
ln(1/ |λ2|)

K∑
k=1

∆k.

Centralized algorithm

R(TN) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

K∑
k=1

∆k.

No communication:

R(T) .
∑

k:∆k>0

Nσ2 ln(T)

∆k
+N

K∑
k=1

∆k

Lower bound (straighforward):

R(T) = Ω

(∑
k:∆k>0

σ2 ln(TN)

∆k
+

(
N

K
+ 1

) K∑
k=1

∆k

)

13 23

Interpretation of the regret

DDUCB (acceleration):

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)√
ln(1/ |λ2|)

K∑
k=1

∆k.

Centralized algorithm

R(TN) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

K∑
k=1

∆k.

No communication:

R(T) .
∑

k:∆k>0

Nσ2 ln(T)

∆k
+N

K∑
k=1

∆k

Lower bound (straighforward):

R(T) = Ω

(∑
k:∆k>0

σ2 ln(TN)

∆k
+

(
N

K
+ 1

) K∑
k=1

∆k

)

13 23

Interpretation of the regret

DDUCB (acceleration):

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)√
ln(1/ |λ2|)

K∑
k=1

∆k.

Centralized algorithm

R(TN) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

K∑
k=1

∆k.

No communication:

R(T) .
∑

k:∆k>0

Nσ2 ln(T)

∆k
+N

K∑
k=1

∆k

Lower bound (straighforward):

R(T) = Ω

(∑
k:∆k>0

σ2 ln(TN)

∆k
+

(
N

K
+ 1

) K∑
k=1

∆k

)

13 23

Interpretation of the regret

DDUCB (acceleration):

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)√
ln(1/ |λ2|)

K∑
k=1

∆k.

Centralized algorithm

R(TN) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

K∑
k=1

∆k.

No communication:

R(T) .
∑

k:∆k>0

Nσ2 ln(T)

∆k
+N

K∑
k=1

∆k

Lower bound (straighforward):

R(T) = Ω

(∑
k:∆k>0

σ2 ln(TN)

∆k
+

(
N

K
+ 1

) K∑
k=1

∆k

)
13 23

Interpretation of the regret

DDUCB (no acceleration):

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)

ln(1/ |λ2|)

K∑
k=1

∆k.

DDUCB without hiding the stages hyperparameter ε and the exploration
parameter η:

R(T) .
∑

k:∆k>0

η(1 + ε)σ2 ln(TN)

∆k
+

(
N ln(N/ε)

ln(1/ |λ2|)
+

η

η − 1

) K∑
k=1

∆k.

Algorithm in (?), coopUCB:

R(T) .
∑

k:∆k>0

N∑
j=1

γ(1 + εjc)

N∆k
ln(TN) +N

(√
N

N∑
j=2

|λj |
1− |λj |

+
γ

γ − 1

) K∑
k=1

∆k

14 23

Interpretation of the regret

DDUCB (no acceleration):

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)

ln(1/ |λ2|)

K∑
k=1

∆k.

DDUCB without hiding the stages hyperparameter ε and the exploration
parameter η:

R(T) .
∑

k:∆k>0

η(1 + ε)σ2 ln(TN)

∆k
+

(
N ln(N/ε)

ln(1/ |λ2|)
+

η

η − 1

) K∑
k=1

∆k.

Algorithm in (?), coopUCB:

R(T) .
∑

k:∆k>0

N∑
j=1

γ(1 + εjc)

N∆k
ln(TN) +N

(√
N

N∑
j=2

|λj |
1− |λj |

+
γ

γ − 1

) K∑
k=1

∆k

14 23

Interpretation of the regret

DDUCB (no acceleration):

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)

ln(1/ |λ2|)

K∑
k=1

∆k.

DDUCB without hiding the stages hyperparameter ε and the exploration
parameter η:

R(T) .
∑

k:∆k>0

η(1 + ε)σ2 ln(TN)

∆k
+

(
N ln(N/ε)

ln(1/ |λ2|)
+

η

η − 1

) K∑
k=1

∆k.

Algorithm in (?), coopUCB:

R(T) .
∑

k:∆k>0

N∑
j=1

γ(1 + εjc)

N∆k
ln(TN) +N

(√
N

N∑
j=2

|λj |
1− |λj |

+
γ

γ − 1

) K∑
k=1

∆k

14 23

Comparison with previous work

I ? designed and analyzed coopUCB.

I coopUCB runs a decentralized UCB but with no delays.

I Size of confidence intervals increases to compensate for the inaccuracy of
the estimation.

I It needs the knowledge of more data about the graph (whole spectrum of P
and its eigenvectors).

15 23

Comparison with previous work

For coopUCB, the algorithm in (?) the regret is:

R(T) . α
∑

k:∆k>0

σ2 log TN

∆k
+ β

K∑
k=1

∆k

and
1 . α ;

N ln(N)

ln(1/ |λ2|)
. β.

16 23

Comparison with previous work

For coopUCB, the algorithm in (?) the regret is:

R(T) . α
∑

k:∆k>0

σ2 log TN

∆k
+ β

K∑
k=1

∆k

and
1 . α ;

N ln(N)

ln(1/ |λ2|)
. β.

I Communication is trivial in the case of a complete graph. It is a batched
bandit problem.

I Asymptotic regret for that case and highly connected graphs is the same for
DDUCB and coopUCB.

I We obtain a graph independent constant in the first term and a better
bound in the second term for general graphs.

16 23

Comparison with previous work

For coopUCB, the algorithm in (?) the regret is:

R(T) . α
∑

k:∆k>0

σ2 log TN

∆k
+ β

K∑
k=1

∆k

and
1 . α ;

N ln(N)

ln(1/ |λ2|)
. β.

I Communication is trivial in the case of a complete graph. It is a batched
bandit problem.

I Asymptotic regret for that case and highly connected graphs is the same for
DDUCB and coopUCB.

I We obtain a graph independent constant in the first term and a better
bound in the second term for general graphs.

16 23

Comparison with previous work

For coopUCB, the algorithm in (?) the regret is:

R(T) . α
∑

k:∆k>0

σ2 log TN

∆k
+ β

K∑
k=1

∆k

and
1 . α ;

N ln(N)

ln(1/ |λ2|)
. β.

I Communication is trivial in the case of a complete graph. It is a batched
bandit problem.

I Asymptotic regret for that case and highly connected graphs is the same for
DDUCB and coopUCB.

I We obtain a graph independent constant in the first term and a better
bound in the second term for general graphs.

16 23

Comparison with previous work

For coopUCB, the algorithm in (?) the regret is:

R(T) . α
∑

k:∆k>0

σ2 log TN

∆k
+ β

K∑
k=1

∆k

and
1 . α ;

N ln(N)

ln(1/ |λ2|)
. β.

Example:

Graph: Cycle α β

[Landgren et al. ’16] Θ(N2) Θ(N7/2)

DDUCB (unacc) Θ(1) Θ(N3 log(N))

DDUCB (acc) Θ(1) Θ(N2 log(N))

16 23

Simulations

0 2000 4000 6000 8000 10000
Iterations

0

10000

20000

30000

40000

Re
gr

et

Communication graph: cycle ; Number of nodes=100
coopUCB gamma=2
coopUCB gamma=1.01
coopUCB gamma=1.0001
DDUCB_unaccel_Csmall
DDUCB_accel

0 2000 4000 6000 8000 10000
Iterations

0

20000

40000

60000

80000

100000

120000

Re
gr

et

Communication graph: cycle ; Number of nodes=200
coopUCB gamma=2
coopUCB gamma=1.01
coopUCB gamma=1.0001
DDUCB_unaccel_Csmall
DDUCB_accel

Cycle with N = 100 (left) and N = 200 (right).

K = 17; optimal arm N(1, 1); sub-optimal arms N(0.8, 1)

17 23

Simulations

0 2000 4000 6000 8000 10000
Iterations

0

10000

20000

30000

40000

50000

60000

70000

Re
gr

et

Communication graph: grid ; Number of nodes=100
coopUCB gamma=2
coopUCB gamma=1.01
coopUCB gamma=1.0001
DDUCB_unaccel_Csmall
DDUCB_accel

0 2000 4000 6000 8000 10000
Iterations

0

20000

40000

60000

80000

100000

120000

140000

160000

Re
gr

et

Communication graph: grid ; Number of nodes=225
coopUCB gamma=2
coopUCB gamma=1.01
coopUCB gamma=1.0001
DDUCB_unaccel_Csmall
DDUCB_accel

Square grid with N = 100 (left) and N = 225 (right).

K = 17; optimal arm N(1, 1); sub-optimal arms N(0.8, 1)

18 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):
I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`

mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N
I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:

I Control on weights yields P(
mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).
I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):

I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`

mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N
I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:

I Control on weights yields P(
mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).
I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):
I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`

mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N
I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:

I Control on weights yields P(
mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).
I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):
I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`

mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N
I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:

I Control on weights yields P(
mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).
I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):
I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`

mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N

I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:

I Control on weights yields P(
mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).
I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):
I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`

mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N
I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:

I Control on weights yields P(
mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).
I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):
I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`

mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N
I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:

I Control on weights yields P(
mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).
I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):
I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`

mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N
I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:

I Control on weights yields P(
mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).
I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):
I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`
mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N
I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:

I Control on weights yields P(
mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).
I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):
I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`
mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N
I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:
I Control on weights yields P(

mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).

I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Proof Sketch

I Network Regret =
∑K
k=1 ∆kE

[
nkT
]

I Relate network’s quantities (nkt) to agents’ approximations (nkt,v):
I Variables used by agents to make decisions, using delayed information:

nkt,v
N

=
∑

`∈{pulls from arm k
up to dt}

weight`
mk
t,v

N
=

∑
`∈{pulls from arm k

up to dt}

weight` · reward`

I weight` = qC(P)vw for some w ∈ V , delay(t) := dt := K + b t−K
C
cC − C

I Accelerated mixing yields |weight` − 1
N
| ≤ ε

N
I This yields nkt,v ≥ (1− ε)ndtk

I Delay does not increase regret by much: τ -delay yields increase τ
∑
k ∆k

I Control prob. of playing sub-optimal arm given agents’ information:
I Control on weights yields P(

mkt,v

nkt,v
− µk ≥

√
2ησ2 log s

nkt,v
) ≤ 1

sη+1 (and

analogous inequality for the other side).
I This yields P(It,v = k|nkt,v > 16ησ2 ln(Ndt)

∆2
k

) ≤ 2
(Ndt)η

19 23

Variants

1. Add the local information obtained during a stage to the UCB estimation.

2. Make neighbors send you their local information during the stage and use it
as above.

3. In accelerated mixing, keep mixing rewards with the unaccelerated method,
after a mixing stage.

4. No need to know |λ2|, just an upper bound. Regret increases accordingly.

5. Reduce communication at the expense of increasing delay: send the same
information in more steps. (Analysis is straightforward since we worked with
an arbitrary fixed delay).

20 23

Variants

1. Add the local information obtained during a stage to the UCB estimation.

2. Make neighbors send you their local information during the stage and use it
as above.

3. In accelerated mixing, keep mixing rewards with the unaccelerated method,
after a mixing stage.

4. No need to know |λ2|, just an upper bound. Regret increases accordingly.

5. Reduce communication at the expense of increasing delay: send the same
information in more steps. (Analysis is straightforward since we worked with
an arbitrary fixed delay).

20 23

Variants

1. Add the local information obtained during a stage to the UCB estimation.

2. Make neighbors send you their local information during the stage and use it
as above.

3. In accelerated mixing, keep mixing rewards with the unaccelerated method,
after a mixing stage.

4. No need to know |λ2|, just an upper bound. Regret increases accordingly.

5. Reduce communication at the expense of increasing delay: send the same
information in more steps. (Analysis is straightforward since we worked with
an arbitrary fixed delay).

20 23

Variants

1. Add the local information obtained during a stage to the UCB estimation.

2. Make neighbors send you their local information during the stage and use it
as above.

3. In accelerated mixing, keep mixing rewards with the unaccelerated method,
after a mixing stage.

4. No need to know |λ2|, just an upper bound. Regret increases accordingly.

5. Reduce communication at the expense of increasing delay: send the same
information in more steps. (Analysis is straightforward since we worked with
an arbitrary fixed delay).

20 23

Variants

1. Add the local information obtained during a stage to the UCB estimation.

2. Make neighbors send you their local information during the stage and use it
as above.

3. In accelerated mixing, keep mixing rewards with the unaccelerated method,
after a mixing stage.

4. No need to know |λ2|, just an upper bound. Regret increases accordingly.

5. Reduce communication at the expense of increasing delay: send the same
information in more steps. (Analysis is straightforward since we worked with
an arbitrary fixed delay).

20 23

Spectral gap and regret

Graphs with greater spectral gap benefit more from decentralization.

Terms of the regret for DDUCB, if regret is
R(T) . α

∑
k:∆k>0

σ2 log TN
∆k

+ β
∑K
k=1 ∆k

Graph Cycle Square Grid Random Geom. Graph Expander
Samples per it. N N N N

α O(1) O(1) O(1) O(1)

β Õ(N2) Õ(N3/2) Õ(N3/2) ∗ Õ(N)

∗Second term of regret with high probability for a random geometric graph on [0, 1]2

with connectivity radius Ω(
√

log1+ε n/n) (for any ε > 0).

21 23

Conclusion

I New algorithm based on graph-dependent mixing delay.

I Optimal in complete graphs and improvement for graphs with geometry.

I First algorithm with size-independent log T -term in regret.

I Communication can be accelerated using Chebyshev polynomials.

I Trade-off between regret and communication (graph & delay decisions).

22 23

Conclusion

I New algorithm based on graph-dependent mixing delay.

I Optimal in complete graphs and improvement for graphs with geometry.

I First algorithm with size-independent log T -term in regret.

I Communication can be accelerated using Chebyshev polynomials.

I Trade-off between regret and communication (graph & delay decisions).

22 23

Conclusion

I New algorithm based on graph-dependent mixing delay.

I Optimal in complete graphs and improvement for graphs with geometry.

I First algorithm with size-independent log T -term in regret.

I Communication can be accelerated using Chebyshev polynomials.

I Trade-off between regret and communication (graph & delay decisions).

22 23

Conclusion

I New algorithm based on graph-dependent mixing delay.

I Optimal in complete graphs and improvement for graphs with geometry.

I First algorithm with size-independent log T -term in regret.

I Communication can be accelerated using Chebyshev polynomials.

I Trade-off between regret and communication (graph & delay decisions).

22 23

