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Our Riemannian Optimization Setting

Function f : M — R

inf
R )

Smoothness and (possibly u-strong) geodesic
convexity:
p< V2(x) < L.
Riemannian manifold M:
» Uniquely geodesic.
» Geodesically convex.

> Sectional curvature in [Kmin, Smax]-
First-order methods

Access to an oracle x — {f(x), Vf(x)}.
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Why?

» Constrained problems to unconstrained ones on a manifold.

» Euclidean non-convex problems can be geodesically convex on a manifold with the right metric.
Applications:

» Fixed-rank matrices: Low-rank matrix factorization.

» SPD matrices: Gaussian mixtures, covariance estimation, operator scaling.

> Stiefel manifold (orthonormal matrices): Sparse PCA, DNNs with orthogonality constraints.

» Sphere: PCA.
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Some assumptions in Riemannian optimization to improve on

» Assume iterates remain bounded and then show convergence.
— Compatible with the algorithm diverging!

» Less nice: The algorithm knows the bound, uses its value and the
iterates depend on it.
— Many circular arguments!

» Tricky: Assume L-smoothness and pi-strong convexity globally...
— Impossible for manifolds with curvature < ¢ < 0. E.g. In

B(0,R) C 37 it's + = Q(R +1).

» ...orin a local region without guaranteeing iterates stay in it.
— Need for ensuring quantified bounded iterates!.



Examples from Prior Work

def

> R = d(xo,x*)
> D maxee[7] d(xt, x*)

> Geometric constants (p = ©(D + 1), ép € (0,1]. In a ball B(xg, R), it is:

Vi (ld(x7 x0)2> = —Exp.(x). and &z < V? (;d(x, X0)2> < (p

2
convex str. convex D
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RGD (MP23)  O(L2%) - ?
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Our Riemannian Gradient Descent Results

Recall: R :=d(xp,x*), D = max.[r d(x,x")

Riemannian Gradient Descent (RGD): x¢1 <= Exp, (—nVf(x:))

» For = 1/L: Maximal distance to optimizer > Mirror-descent—style analysis. In hyperbolic
is at most D = O(R(g) space: maximal optimality gap at distance
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» Forn=1/(L{r), D=R. RGD is > Polyak step-size type of analysis.
quasi-nonexpansive:
d(xet1, x*) < d(x¢, x*) for all t.

» Convergence rates for Composite RGD:

Xep1 = argmin {(VF(x), Exp, (X)) + 5d(x, x)* + &(x) } -
xeX
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Our Proximal Point Results

Recall: R = d(x,x*),

D = maxyeir) d(xt, x*)

Riemannian Proximal Point Algorithm: prox, (x) = arg min,cy {f(y) + %nd(y,x)2}

» Rates for general manifolds. Only
Hadamard before.

» The prox operator in quasi-nonexpansive.

» The Moreau envelope is (¢p/n)-smooth.

» An efficient inexact implementation for
smooth functions.

>

Moreau envelope is not g-convex in positive
curvature but still we show O(+)
convergence.

Bounded iterates!

Exploit the (p smoothness of the squared
distance.

By RGD in 5(CD) or by Composite RGD in
O(1). Monteiro-Svaiter-like criterion for
inexactness.



Result Overview and Trade-offs

Min Desiderata
Method g-convex p-str. g-convex D Needs R? » Best oracle complexity:
o 2 :
RGD, O(Q%%) O(L) O(RGr) No O(LR?/e) and O(L/p) in the
s ~ *L” convex and strongly convex

“RGD, o(*-) o(;) O(R) No setting.
fRed. RGD, 1 O(G+£%) - O(R&) Yes » No knowlegde of R required to
RGDL*%;‘ o(gR%) 5(@&) R Yes set the step-size.
RIPPACRGD  O(L2)  O(L;)  O(R)  Yes > Fficiently computable
t ) 2 LR? O(c2L '
RIPPA-PRGD  O(G =) O ) O(R) Yes » Best bound on D: L & p may

Min-Max grow with D and are not equal

~ N _ between rows.

RIPPA-RGDA  O(CALE) O(chL) O(RCR) No

©Hyperbolic Space, THadamard manifolds.



Outlook

» Experimental results: No increase in distance
observed.

100 =

» |Is RGD with n = % quasi-nonexpansive? \:f
N —— RIPPA
1078 | |=— RGD: n= L1
= RGD: n = (L{)~!
> Can we achieve the best Of all WO£|dS7 I.e., 0 10‘00 20‘00 30‘00 40‘00 5000
best of our rates O(LR? /) and O(L/u), best Gradient computations

bound O(R) on iterates, efficiently
implementable, no knowledge of R. Figure: Karcher mean with n = 1000 centers in 81%.



