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Our Riemannian Optimization Setting

Function f : M→ R

min
x∈M

f (x)

Smoothness and (possibly µ-strong) geodesic
convexity:

µ ≼ ∇2f (x) ≼ L.

Riemannian manifold M:
▶ Uniquely geodesic.
▶ Geodesically convex.
▶ Sectional curvature in [κmin, κmax].

First-order methods

Access to an oracle x 7→ {f (x),∇f (x)}.
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Why?

▶ Constrained problems to unconstrained ones on a manifold.

▶ Euclidean non-convex problems can be geodesically convex on a manifold with the right metric.

Applications:

▶ Fixed-rank matrices: Low-rank matrix factorization.

▶ SPD matrices: Gaussian mixtures, covariance estimation, operator scaling.

▶ Stiefel manifold (orthonormal matrices): Sparse PCA, DNNs with orthogonality constraints.

▶ Sphere: PCA.
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Some assumptions in Riemannian optimization to improve on

▶ Assume iterates remain bounded and then show convergence.
→ Compatible with the algorithm diverging!

▶ Less nice: The algorithm knows the bound, uses its value and the
iterates depend on it.
→ Many circular arguments!

▶ Tricky: Assume L-smoothness and µ-strong convexity globally...
→ Impossible for manifolds with curvature ≤ c < 0. E.g. In
B(0,R) ⊂ Hd it’s L

µ = Ω(R + 1).

▶ ...or in a local region without guaranteeing iterates stay in it.
→ Need for ensuring quantified bounded iterates!.
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Examples from Prior Work

▶ R
def
= d(x0, x

∗)

▶ D
def
= maxt∈[T ] d(xt , x

∗)

▶ Geometric constants ζD = Θ(D + 1), δD ∈ (0, 1]. In a ball B(x0, R̃), it is:

∇x

(
1
2
d(x , x0)

2
)

= −Exp−1
x (x0). and δR̃ ≼ ∇2

(
1
2
d(x , x0)

2
)

≼ ζR̃

convex str. convex D

Euclidean GD O(LR
2

ε ) Õ( Lµ ) R

RGD (Udr94) - Õ( Lµ ) ?
RGD (ZS16) O(ζD

LR2

ε ) Õ(ζD + L
µ ) ?

RGD (MP23) O(LD
2

ε ) - ?
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Our Riemannian Gradient Descent Results

Recall: R := d(x0, x
∗), D := maxt∈[T ] d(xt , x

∗)

Riemannian Gradient Descent (RGD): xt+1 ← Expxt (−η∇f (xt))

▶ For η = 1/L: Maximal distance to optimizer
is at most D = O(RζR)
▶ Hyperbolic space: D = O(R). And we

match Euclidean rates!

▶ Mirror-descent–style analysis. In hyperbolic
space: maximal optimality gap at distance
R is O(LR

2

ζR
).

▶ For η = 1/(LζR), D = R. RGD is
quasi-nonexpansive:
d(xt+1, x

∗) ≤ d(xt , x
∗) for all t.

▶ Polyak step-size type of analysis.

▶ Convergence rates for Composite RGD:

xt+1 ← argmin
x∈X

{
⟨∇f (xt),Exp−1

xt (x)⟩+ L
2d(x , xt)

2 + g(x)
}
.
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Our Proximal Point Results

Recall: R := d(x0, x
∗), D := maxt∈[T ] d(xt , x

∗)

Riemannian Proximal Point Algorithm: proxη(x)
def
= argminy∈X

{
f (y) + 1

2ηd(y , x)
2
}

▶ Rates for general manifolds. Only
Hadamard before.

▶ Moreau envelope is not g-convex in positive
curvature but still we show O( 1

T )
convergence.

▶ The prox operator in quasi-nonexpansive. ▶ Bounded iterates!

▶ The Moreau envelope is (ζD/η)-smooth. ▶ Exploit the ζD smoothness of the squared
distance.

▶ An efficient inexact implementation for
smooth functions.

▶ By RGD in Õ(ζD) or by Composite RGD in
Õ(1). Monteiro-Svaiter-like criterion for
inexactness.
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Result Overview and Trade-offs

Min

Method g-convex µ-str. g-convex D Needs R?

RGDL−1 O(ζ2
R

LR2

ε
) Õ( L

µ
) O(RζR) No

♢RGDL−1 O( LR
2

ε
) Õ( L

µ
) O(R) No

†Red. RGDL−1 Õ(ζ2
R+

LR2

ε
) – O(RζR) Yes

RGD
L−1ζ−1

R
O(ζR

LR2

ε
) Õ(ζR

L
µ
) R Yes

RIPPA-CRGD Õ( LR2

δ2Rε
) Õ( L

δ2Rµ
) O(R) Yes

†RIPPA-PRGD O(ζ2
R

LR2

ε
) Õ(ζ2

R
L
µ
) O(R) Yes

Min-Max

RIPPA-RGDA Õ(ζ4
R

LR2

ε
) Õ(ζ4

R
L
µ
) O(RζR) No

♢Hyperbolic Space, †Hadamard manifolds.

Desiderata
▶ Best oracle complexity:

O(LR2/ε) and Õ(L/µ) in the
convex and strongly convex
setting.

▶ No knowlegde of R required to
set the step-size.

▶ Efficiently computable
iterations.

▶ Best bound on D: L & µ may
grow with D and are not equal
between rows.
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Outlook

▶ Experimental results: No increase in distance
observed.

▶ Is RGD with η = 1
L quasi-nonexpansive?

▶ Can we achieve the best of all worlds? I.e.,
best of our rates O(LR2/ε) and Õ(L/µ), best
bound O(R) on iterates, efficiently
implementable, no knowledge of R.

0 1000 2000 3000 4000 5000

Gradient computations

10−8

10−6

10−4

10−2

100

d
(x
t
,x
∗ )

2

RIPPA

RGD: η = L−1

RGD: η = (Lζ)−1

Figure: Karcher mean with n = 1000 centers in S100
+ .

8 8


