Convergence and Trade-Offs in Riemannian Gradient Descent and Proximal Point

Technische Universität Berlin, Zuse Institute Berlin, Carlos III University

Our Riemannian Optimization Setting

Function $f: \mathcal{M} \to \mathbb{R}$

$$\min_{x \in \mathcal{M}} f(x)$$

Smoothness and (possibly μ -strong) geodesic convexity:

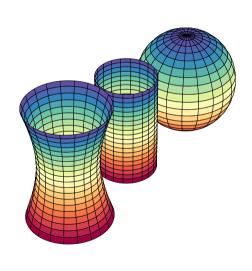
$$\mu \preccurlyeq \nabla^2 f(x) \preccurlyeq L.$$

Riemannian manifold \mathfrak{M} :

- Uniquely geodesic.
- Geodesically convex.
- ▶ Sectional curvature in $[\kappa_{min}, \kappa_{max}]$.

First-order methods

Access to an oracle $x \mapsto \{f(x), \nabla f(x)\}.$



Why?

- Constrained problems to unconstrained ones on a manifold.
- ▶ Euclidean non-convex problems can be geodesically convex on a manifold with the right metric.

Applications:

- Fixed-rank matrices: Low-rank matrix factorization.
- ▶ SPD matrices: Gaussian mixtures, covariance estimation, operator scaling.
- ▶ Stiefel manifold (orthonormal matrices): Sparse PCA, DNNs with orthogonality constraints.
- **Sphere:** PCA.

- ▶ Assume iterates remain bounded and then show convergence.
 - → Compatible with the algorithm **diverging**!

- ▶ Assume iterates remain bounded and then show convergence.
 - → Compatible with the algorithm **diverging**!
- ► Less nice: The algorithm knows the bound, uses its value and the iterates depend on it.
 - → Many circular arguments!

- ▶ Assume iterates remain bounded and then show convergence.
 - → Compatible with the algorithm **diverging!**
- ► Less nice: The algorithm knows the bound, uses its value and the iterates depend on it.
 - → Many circular arguments!
- ▶ Tricky: Assume L-smoothness and μ -strong convexity globally...

- ▶ Assume iterates remain bounded and then show convergence.
 - → Compatible with the algorithm **diverging**!
- Less nice: The algorithm knows the bound, uses its value and the iterates depend on it.
 - → Many circular arguments!
- ▶ Tricky: Assume L-smoothness and μ -strong convexity globally...
- \rightarrow Impossible for manifolds with curvature $\leq c < 0$. E.g. In $B(0,R) \subset \mathcal{H}^d$ it's $\frac{L}{\mu} = \Omega(R+1)$.

- ▶ Assume iterates remain bounded and then show convergence.
 - → Compatible with the algorithm **diverging**!
- ► Less nice: The algorithm knows the bound, uses its value and the iterates depend on it.
 - ightarrow Many circular arguments!
- ▶ Tricky: Assume L-smoothness and μ -strong convexity globally...
- \rightarrow Impossible for manifolds with curvature $\leq c < 0$. E.g. In $B(0,R) \subset \mathcal{H}^d$ it's $\frac{L}{\mu} = \Omega(R+1)$.
- ...or in a local region without guaranteeing iterates stay in it.
 - \rightarrow Need for ensuring quantified bounded iterates!.

Examples from Prior Work

- $ightharpoonup R \stackrel{\text{def}}{=} d(x_0, x^*)$
- $\blacktriangleright D \stackrel{\text{\tiny def}}{=} \max_{t \in [T]} d(x_t, x^*)$
- ▶ Geometric constants $\zeta_D = \Theta(D+1)$, $\delta_D \in (0,1]$. In a ball $B(x_0, \tilde{R})$, it is:

$$\nabla_{x}\left(\frac{1}{2}d(x,x_{0})^{2}\right) = -\operatorname{Exp}_{x}^{-1}(x_{0}). \quad \text{and} \quad \delta_{\tilde{R}} \preccurlyeq \nabla^{2}\left(\frac{1}{2}d(x,x_{0})^{2}\right) \preccurlyeq \zeta_{\tilde{R}}$$

	convex	str. convex	D
Euclidean GD	$O(\frac{LR^2}{\varepsilon})$	$\widetilde{O}(rac{L}{\mu})$	R
RGD (Udr94)	-	$\widetilde{O}(\frac{L}{\mu})$?
RGD (ZS16)	$O(\zeta_D \frac{LR^2}{\varepsilon})$	$\widetilde{O}(\zeta_D + \frac{L}{\mu})$?
RGD (MP23)	$O(\frac{LD^2}{\varepsilon})$	-	?

Examples from Prior Work

- $ightharpoonup R \stackrel{\text{def}}{=} d(x_0, x^*)$
- ▶ Geometric constants $\zeta_D = \Theta(D+1)$, $\delta_D \in (0,1]$. In a ball $B(x_0, \tilde{R})$, it is:

$$\nabla_x \left(\frac{1}{2} d(x, x_0)^2 \right) = - \operatorname{Exp}_x^{-1}(x_0). \quad \text{and} \quad \delta_{\tilde{R}} \preccurlyeq \nabla^2 \left(\frac{1}{2} d(x, x_0)^2 \right) \preccurlyeq \zeta_{\tilde{R}}$$

	convex	str. convex	D
Euclidean GD	$O(\frac{LR^2}{\varepsilon})$	$\widetilde{O}(rac{L}{\mu})$	R
RGD (Udr94)	-	$\widetilde{O}(\frac{L}{\mu})$?
RGD (ZS16)	$O(\zeta_D \frac{LR^2}{\varepsilon})$	$\widetilde{O}(\zeta_{D} + \frac{L}{\mu})$?
RGD (MP23)	$O(\frac{LD^2}{\varepsilon})$	-	?

Examples from Prior Work

- $ightharpoonup R \stackrel{\text{def}}{=} d(x_0, x^*)$
- $\blacktriangleright D \stackrel{\text{\tiny def}}{=} \max_{t \in [T]} d(x_t, x^*)$
- ▶ Geometric constants $\zeta_D = \Theta(D+1)$, $\delta_D \in (0,1]$. In a ball $B(x_0, \tilde{R})$, it is:

$$\nabla_x \left(\frac{1}{2} d(x, x_0)^2 \right) = -\operatorname{Exp}_x^{-1}(x_0). \quad \text{and} \quad \delta_{\tilde{R}} \preccurlyeq \nabla^2 \left(\frac{1}{2} d(x, x_0)^2 \right) \preccurlyeq \zeta_{\tilde{R}}$$

	convex	str. convex	D
Euclidean GD	$O(\frac{LR^2}{\varepsilon})$	$\widetilde{O}(rac{L}{\mu})$	R
RGD (Udr94)	-	$\widetilde{O}(\frac{L}{\mu})$?
RGD (ZS16)	$O(\zeta_D \frac{LR^2}{\varepsilon})$	$\widetilde{O}(\zeta_D + \frac{L}{\mu})$?
RGD (MP23)	$O(\frac{LD^2}{\varepsilon})$	-	?

Our Riemannian Gradient Descent Results

Recall:
$$R := d(x_0, x^*), \quad D := \max_{t \in [T]} d(x_t, x^*)$$

Riemannian Gradient Descent (RGD): $x_{t+1} \leftarrow \mathsf{Exp}_{x_t}(-\eta \nabla f(x_t))$

- For $\eta = 1/L$: Maximal distance to optimizer is at most $D = O(R\zeta_R)$
 - ► Hyperbolic space: D = O(R). And we match Euclidean rates!

Mirror-descent–style analysis. In hyperbolic space: maximal optimality gap at distance R is $O(\frac{LR^2}{\zeta_R})$.

Our Riemannian Gradient Descent Results

Recall:
$$R := d(x_0, x^*), \quad D := \max_{t \in [T]} d(x_t, x^*)$$

Riemannian Gradient Descent (RGD): $x_{t+1} \leftarrow \mathsf{Exp}_{x_t}(-\eta \nabla f(x_t))$

- For $\eta = 1/L$: Maximal distance to optimizer is at most $D = O(R\zeta_R)$
 - ► Hyperbolic space: D = O(R). And we match Euclidean rates!
- For $\eta = 1/(L\zeta_R)$, D = R. RGD is **quasi-nonexpansive**: $d(x_{t+1}, x^*) \le d(x_t, x^*)$ for all t.

- Mirror-descent–style analysis. In hyperbolic space: maximal optimality gap at distance R is $O(\frac{LR^2}{\zeta_R})$.
- Polyak step-size type of analysis.

Our Riemannian Gradient Descent Results

Recall:
$$R := d(x_0, x^*), \quad D := \max_{t \in [T]} d(x_t, x^*)$$

Riemannian Gradient Descent (RGD): $x_{t+1} \leftarrow \operatorname{Exp}_{x_t}(-\eta \nabla f(x_t))$

- For $\eta = 1/L$: Maximal distance to optimizer is at most $D = O(R\zeta_R)$
 - ► Hyperbolic space: D = O(R). And we match Euclidean rates!
- For $\eta = 1/(L\zeta_R)$, D = R. RGD is **quasi-nonexpansive**: $d(x_{t+1}, x^*) \le d(x_t, x^*)$ for all t.
- Convergence rates for Composite RGD:

- Mirror-descent-style analysis. In hyperbolic space: maximal optimality gap at distance R is $O(\frac{LR^2}{\zeta_R})$.
- Polyak step-size type of analysis.

$$x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{X}} \left\{ \langle \nabla f(x_t), \operatorname{Exp}_{x_t}^{-1}(x) \rangle + \frac{L}{2} d(x, x_t)^2 + g(x) \right\}.$$

Recall:
$$R := d(x_0, x^*), \quad D := \max_{t \in [T]} d(x_t, x^*)$$

Riemannian Proximal Point Algorithm:
$$\operatorname{prox}_{\eta}(x) \stackrel{\text{def}}{=} \operatorname{arg\,min}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2\eta} d(y,x)^2 \right\}$$

Rates for general manifolds. Only Hadamard before. Moreau envelope is not g-convex in positive curvature but still we show $O(\frac{1}{T})$ convergence.

Recall:
$$R := d(x_0, x^*), \quad D := \max_{t \in [T]} d(x_t, x^*)$$

Riemannian Proximal Point Algorithm:
$$\operatorname{prox}_{\eta}(x) \stackrel{\text{\tiny def}}{=} \operatorname{arg\,min}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2\eta} d(y,x)^2 \right\}$$

Rates for general manifolds. Only Hadamard before.

► The prox operator in quasi-nonexpansive.

- Moreau envelope is not g-convex in positive curvature but still we show $O(\frac{1}{T})$ convergence.
- Bounded iterates!

Recall:
$$R := d(x_0, x^*), \quad D := \max_{t \in [T]} d(x_t, x^*)$$

Riemannian Proximal Point Algorithm:
$$\operatorname{prox}_{\eta}(x) \stackrel{\text{def}}{=} \operatorname{arg\,min}_{y \in \mathfrak{X}} \left\{ f(y) + \frac{1}{2\eta} d(y,x)^2 \right\}$$

Rates for general manifolds. Only Hadamard before.

- The prox operator in quasi-nonexpansive.
- ► The Moreau envelope is (ζ_D/η) -smooth.

- Moreau envelope is not g-convex in positive curvature but still we show $O(\frac{1}{T})$ convergence.
- Bounded iterates!
- Exploit the ζ_D smoothness of the squared distance.

Recall:
$$R := d(x_0, x^*), \quad D := \max_{t \in [T]} d(x_t, x^*)$$

Riemannian Proximal Point Algorithm:
$$\operatorname{prox}_{\eta}(x) \stackrel{\text{def}}{=} \operatorname{arg\,min}_{y \in \mathfrak{X}} \left\{ f(y) + \frac{1}{2\eta} d(y,x)^2 \right\}$$

- Rates for general manifolds. Only Hadamard before.
- ► The prox operator in quasi-nonexpansive.
- ► The Moreau envelope is (ζ_D/η) -smooth.
- ► An efficient inexact implementation for smooth functions.

- Moreau envelope is not g-convex in positive curvature but still we show $O(\frac{1}{T})$ convergence.
- Bounded iterates!
- Exploit the ζ_D smoothness of the squared distance.
- ▶ By RGD in $\widetilde{O}(\zeta_D)$ or by Composite RGD in $\widetilde{O}(1)$. Monteiro-Svaiter-like criterion for inexactness.

Result Overview and Trade-offs

Min					
Method	g-convex	μ -str. g-convex	D	Needs R?	
$RGD_{L^{-1}}$	$O(\zeta_R^2 \frac{LR^2}{\varepsilon})$	$\widetilde{O}(\frac{L}{\mu})$	$O(R\zeta_{\!R})$	No	
$^{\diamond}$ RGD _L -1	$O(\frac{LR^2}{\varepsilon})$	$\widetilde{O}(rac{L}{\mu})$	O(R)	No	
† Red. RGD _L $^{-1}$	$\widetilde{O}(\zeta_{\!R}^2 \! + \! rac{LR^2}{arepsilon})$	_	$O(R\zeta_{\!R})$	Yes	
$RGD_{L^{-1}\zeta_R^{-1}}$	$O(\zeta_{\!R} rac{LR^2}{arepsilon})$	$\widetilde{O}(\zeta_{\!R} rac{L}{\mu})$	R	Yes	
RIPPA-CRGD	$\widetilde{O}(rac{LR^{f 2}}{\delta_{{f 2}R}arepsilon})$	$\widetilde{O}(rac{L}{\delta_{2R}\mu})$	O(R)	Yes	
†RIPPA-PRGD	$O(\zeta_R^2 \frac{LR^2}{\varepsilon})$	$\widetilde{O}(\zeta_R^2 rac{L}{\mu})$	O(R)	Yes	
Min-Max					
RIPPA-RGDA	$\widetilde{O}(\zeta_R^4 \frac{LR^2}{\varepsilon})$	$\widetilde{O}(\zeta_R^4 \frac{L}{\mu})$	$O(R\zeta_R)$	No	

Desiderata

- ▶ Best oracle complexity: $O(LR^2/\varepsilon)$ and $\widetilde{O}(L/\mu)$ in the convex and strongly convex setting.
- ► No knowlegde of *R* required to set the step-size.
- Efficiently computable iterations.
- ▶ Best bound on D: $L \& \mu$ may grow with D and are not equal between rows.

[♦] Hyperbolic Space, †Hadamard manifolds.

Outlook

 Experimental results: No increase in distance observed.

ls RGD with $\eta = \frac{1}{L}$ quasi-nonexpansive?

▶ Can we achieve the best of all worlds? I.e., best of our rates $O(LR^2/\varepsilon)$ and $\widetilde{O}(L/\mu)$, best bound O(R) on iterates, efficiently implementable, no knowledge of R.

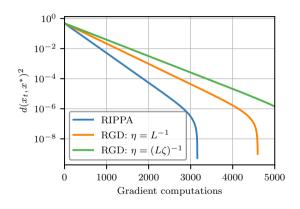


Figure: Karcher mean with n = 1000 centers in S_{+}^{100} .