Bounding Geometric Penalties in First-Order Riemannian Optimization

David Martínez-Rubio, Christophe Roux, Christopher Criscitiello, Sebastian Pokutta

Technische Universität Berlin, Zuse Institute Berlin, École Polytechnique Fédérale de Lausanne

Collaborators

Christophe Roux (ZIB, TU Berlin)

Christopher Criscitiello

Sebastian Pokutta (ZIB, TU Berlin)

For a Riemannian manifold M:

 $min_{x \in \mathcal{M}} f(x)$.

For a Riemannian manifold M:

 $min_{x \in \mathcal{M}} f(x)$.

- \blacktriangleright Spheres, hyperbolic spaces.
- \blacktriangleright SPD matrices.

I ...

- \triangleright SO(*n*) (real orthogonal matrices with $det(A) = 1$).
- Stiefel manifold $V_k(\mathbb{R}^n)$ (ordered orthonormal basis of a k-dim vector space).

Riemannian Optimization - Applications

- **Principal Components Analysis** [\(Jolliffe et al., 2003;](#page--1-0) [Genicot et al., 2015;](#page--1-1) [Huang and Wei,](#page--1-2) [2019\)](#page--1-2).
- ▶ Low-rank matrix completion [\(Cambier and Absil, 2016;](#page--1-3) [Heidel and Schulz, 2018;](#page--1-4) [Mishra and](#page--1-5) [Sepulchre, 2014;](#page--1-5) [Tan et al., 2014;](#page--1-6) [Vandereycken, 2013\)](#page--1-7).
- \triangleright Dictionary learning [\(Cherian and Sra, 2017;](#page--1-8) [Sun et al., 2017\)](#page--1-9).
- \triangleright Optimization under orthogonality constraints [\(Edelman et al., 1998\)](#page--1-10).
	- **In Some applications to RNNs** (Lezcano-Casado and Martínez-Rubio, 2019).
- \blacktriangleright Robust covariance estimation in Gaussian distributions [\(Wiesel, 2012\)](#page--1-11).
- \triangleright Gaussian mixture models [\(Hosseini and Sra, 2015\)](#page--1-12).
- \triangleright Operator scaling [\(Allen-Zhu et al., 2018\)](#page--1-13).
- **Nasserstein Barycenters** [\(Hosseini and Sra, 2020\)](#page--1-14).
- Many more...

For a Riemannian manifold M:

 $min_{x \in \mathcal{M}} f(x)$.

 \triangleright Constrained \rightarrow unconstrained.

For a Riemannian manifold M:

 $min_{x \in \mathcal{M}} f(x)$.

- \triangleright Constrained \rightarrow unconstrained.
- **Sometimes:** Euclidean non-convex \rightarrow Riemannian geodesically convex.

For a Riemannian manifold M:

 $min_{x \in \mathcal{M}} f(x)$.

- \triangleright Constrained \rightarrow unconstrained.
- **If Sometimes:** Euclidean non-convex \rightarrow Riemannian geodesically convex.

Many first-order methods have analogous Riemannian counterparts:

- **Deterministic** [\(de Carvalho Bento et al., 2017;](#page--1-15) [Zhang and Sra, 2016\)](#page--1-16).
- \triangleright Stochastic [\(Hosseini and Sra, 2017;](#page--1-17) [Khuzani and Li, 2017;](#page--1-18) [Tripuraneni et al., 2018\)](#page--1-19).
- ▶ Variance reduced [\(Sato et al., 2017,](#page--1-20) [2019;](#page--1-21) [Zhang et al., 2016\)](#page--1-22).
- \blacktriangleright Adaptive [\(Kasai et al., 2019\)](#page--1-23).
- **In Saddle-point escaping** [\(Criscitiello and Boumal, 2019;](#page--1-24) [Sun et al., 2019;](#page--1-25) [Zhang et al., 2018;](#page--1-26) [Zhou et al., 2019;](#page--1-27) [Criscitiello and Boumal, 2020\)](#page--1-28).
- **Projection-free** [\(Weber and Sra, 2017,](#page--1-29) [2019\)](#page--1-30).
- ▶ Accelerated [\(Zhang and Sra, 2018;](#page--1-31) [Ahn and Sra, 2020;](#page--1-32) [Kim and Yang, 2022\)](#page--1-33).
- Min-max [\(Zhang et al., 2022;](#page--1-34) [Jordan et al., 2022\)](#page--1-35).

Geodesic Convexity

Notation: Let M be a Riemannian manifold. Given $x, y \in \mathcal{M}$ and $v \in T_x\mathcal{M}$ we use $\langle v, y - x \rangle \stackrel{\text{def}}{=} -\langle v, x - y \rangle \stackrel{\text{def}}{=} \langle v, \text{Exp}_x^{-1}(y) \rangle_x.$

Geodesic Convexity

Notation: Let M be a Riemannian manifold. Given $x, y \in \mathcal{M}$ and $y \in \mathcal{T}_{x}\mathcal{M}$ we use $\langle v, y - x \rangle \stackrel{\text{def}}{=} -\langle v, x - y \rangle \stackrel{\text{def}}{=} \langle v, \text{Exp}_x^{-1}(y) \rangle_x.$

I μ -strongly geodesic convexity of $F : \mathcal{M} \to \mathbb{R}$:

$$
F(y) \geq F(x) + \langle \nabla F(x), y - x \rangle + \frac{\mu}{2} d(x, y)^2, \text{for } \mu > 0, \forall x, y \in \mathcal{M}.
$$

If $\mu = 0$, F is geodesically convex (g-convex).

 \blacktriangleright *L*-smoothness:

$$
F(y) \leq F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2}d(x, y)^2, \quad \forall x, y \in \mathcal{M}.
$$

 \blacktriangleright G-Lipschitzness:

$$
\|\nabla F(y)\| \leq G \text{ for all } y \in \mathcal{M}.
$$

 \triangleright A set $\mathfrak X$ is uniquely geodesically convex if there is one and only one geodesic between two points, and it remains in \mathfrak{X} .

Distance squared and cosine inequalities

- Sectional curvature in $[K_{\min}, K_{\max}]$. Assume wlog $|K_{\min}| = 1$.
- $\blacktriangleright \Phi_x(y) \stackrel{\text{def}}{=} \frac{1}{2}d(x,y)^2.$
- \triangleright $\mathcal{X} \subset \mathcal{M}$ compact, g-convex set of diameter D.

$$
\nabla \Phi_x(y) = -\operatorname{Exp}^{-1}_y(x) \quad \text{and} \quad \delta \|v\|^2 \le \operatorname{Hess} \Phi_x(y)[v, v] \le \zeta \|v\|^2 \text{ for all } x, y \in \mathcal{X}.
$$

where

$$
\zeta \stackrel{\text{def}}{=} D\sqrt{|K_{\min}|} \coth(D\sqrt{|K_{\min}|}) = \Theta(D\sqrt{|K_{\min}|} + 1) \qquad \text{if } K_{\min} < 0 \text{ else } 1.
$$
\n
$$
\delta \stackrel{\text{def}}{=} D\sqrt{K_{\max}} \cot(D\sqrt{K_{\max}}) \qquad \text{if } K_{\max} > 0 \text{ else } 1.
$$

Distance squared and cosine inequalities

- Sectional curvature in $[K_{\min}, K_{\max}]$. Assume wlog $|K_{\min}| = 1$.
- $\blacktriangleright \Phi_x(y) \stackrel{\text{def}}{=} \frac{1}{2}d(x,y)^2.$
- \triangleright $\mathcal{X} \subset \mathcal{M}$ compact, g-convex set of diameter D.

$$
\nabla \Phi_x(y) = -\operatorname{Exp}^{-1}_y(x) \quad \text{and} \quad \delta \|v\|^2 \le \operatorname{Hess} \Phi_x(y)[v, v] \le \zeta \|v\|^2 \text{ for all } x, y \in \mathcal{X}.
$$

where

$$
\zeta \stackrel{\text{def}}{=} D\sqrt{|K_{\min}|} \coth(D\sqrt{|K_{\min}|}) = \Theta(D\sqrt{|K_{\min}|} + 1) \qquad \text{if } K_{\min} < 0 \text{ else } 1.
$$
\n
$$
\delta \stackrel{\text{def}}{=} D\sqrt{K_{\max}} \cot(D\sqrt{K_{\max}}) \qquad \text{if } K_{\max} > 0 \text{ else } 1.
$$

Cosine inequalities: Let $x, y, z \in \mathcal{X}$. We have:

$$
2\langle \text{Exp}_x^{-1}(y), \text{Exp}_x^{-1}(z) \rangle \le \zeta d(x,y)^2 + d(x,z)^2 - d(y,z)^2,
$$

$$
2\langle Exp_{x}^{-1}(y), Exp_{x}^{-1}(z) \rangle \geq \delta d(x,y)^{2} + d(x,z)^{2} - d(y,z)^{2}.
$$

In neg. curvature: minimum condition number of any L-smooth μ -strongly convex function is $\approx \zeta_D!$!

Bound what's gotta be bounded!

"Showing that a method converges assuming iterates remain bounded is compatible with the algorithm **diverging**."

A. Matthem Attishen

Ha ha hal I proved convergence!

Bound what's gotta be bounded!

"Showing that a method converges assuming iterates remain bounded is compatible with the algorithm **diverging**."

A. Matthem Attishen

Even worse, if you assume your algorithm knows the bound **a priori**, uses its value and the **iterates depend on it**. Circularity!

Let's do better than that.

Bound what's gotta be bounded!

"Showing that a method converges assuming iterates remain bounded is compatible with the algorithm **diverging**."

A. Matthem Attishen

Even worse, if you assume your algorithm knows the bound **a priori**, uses its value and the **iterates depend on it**. Circularity!

Let's do better than that.

Aim of papers in my talk: Show convergence without unreasonable assumptions.

Techniques to guarantee iterates are bounded, to deal with in-manifold constraints, new rates are discovered, some times very different algorithms, etc.

You won't Believe these 7 Techniques to Bound your Riemannian Iterates!

#5 will blow up your mind!

1. Mapping to Euclidean space (I): Constant curvature solution [\(Ref.\)](https://arxiv.org/pdf/2012.03618v5#page=8)

We reduce the problem to a non-convex, Euclidean constrained problem.

1. Mapping to Euclidean space (I): Constant curvature solution [\(Ref.\)](https://arxiv.org/pdf/2012.03618v5#page=8)

We reduce the problem to a non-convex, Euclidean **constrained** problem.

A function $f:\mathbb{R}^d\to\mathbb{R}$ is tilted-convex if $\exists\;\gamma_{\mathsf{n}},\gamma_{\mathsf{p}}\in(0,1]$ such that:

$$
f(\tilde{x}) + \frac{1}{\gamma_n} \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle \le f(\tilde{y}) \quad \text{if } \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle \le 0, \text{ (grey area)}
$$

$$
f(\tilde{x}) + \gamma_p \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle \le f(\tilde{y}) \quad \text{if } \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle \ge 0.
$$

9 17

2. Metric-Projected Riemannian Gradient Descent [\(Ref.\)](https://arxiv.org/pdf/2305.16186v2#page=10)

- **►** PRGD works in **Hadamard**: $x_{t+1} = \Pi_x(\text{Exp}_{x_t}(-\eta \nabla f(x_t)))$.
- \triangleright Metric projection: Π $x(x)$ ← argmin_{v∈ x}{d(y, x)} for closed g-convex \mathfrak{X} .
- \blacktriangleright Easy to implement if the constraint is a ball.
- \triangleright Convergence for **Lipschitz** functions: easy.
- For smooth problems: not so easy.
- \triangleright We show convergence and pay a ζ_R factor, where $R = G/L$ (Lipschitzness over smoothness).

3. Another Projected Riemannian Gradient Descent [\(Ref.\)](https://arxiv.org/pdf/2211.14645v2#page=36)

- \blacktriangleright Minimize, in $T_{x}M$, the quadratic upper model given by smoothness.
- ► $x_{t+1} = \text{argmin}_{x \in \mathcal{X}} \{ f(x_t) + \langle \nabla f(x_t), \text{Exp}_{x_t}^{-1}(x) \rangle + \frac{L}{2} d(x, x_t)^2 \}.$
- \triangleright Works regardless of the curvature.
- \triangleright Possibly a non-convex problem. Implementable at least in constant curvature.
- \triangleright Gives better information theoretical upper bound wrt number of gradient oracle queries.

4. Proximal point algorithm [\(Ref.\)](https://arxiv.org/pdf/2403.10429v1#page=6)

- 1. Known: nonexpansive operator in Hadamard manifolds.
- 2. We showed: quasi-nonexpansive, i.e., for minimizers x^* it is $d(x_t, x^*) \leq d(x_{t-1}, x^*)$ in the general Riemannian case.
- 3. Approximate versions of this algorithm work and are almost quasi-nonexpansive.
- 4. For L-smooth functions and $\lambda = 1/L$ we get a condition number of $\zeta_{R_{\textbf{0}}}$ in $B(x,R_{\textbf{0}}).$ Only depends on the geometry!

$$
x_t \leftarrow \text{argmin}\left\{f(x) + \frac{1}{\lambda}d(x, x_{t-1})^2\right\}
$$

5. Ball optimization oracle [\(Ref. 1\),](https://arxiv.org/pdf/2012.03618v5#page=33) [\(Ref. 2\)](https://arxiv.org/pdf/2211.14645v2#page=10)

5. Ball optimization oracle [\(Ref. 1\),](https://arxiv.org/pdf/2012.03618v5#page=33) [\(Ref. 2\)](https://arxiv.org/pdf/2211.14645v2#page=10)

5. Ball optimization oracle [\(Ref. 1\),](https://arxiv.org/pdf/2012.03618v5#page=33) [\(Ref. 2\)](https://arxiv.org/pdf/2211.14645v2#page=10)

 \cdot^*

5. Ball optimization oracle [\(Ref. 1\),](https://arxiv.org/pdf/2012.03618v5#page=33) [\(Ref. 2\)](https://arxiv.org/pdf/2211.14645v2#page=10)

5. Ball optimization oracle [\(Ref. 1\),](https://arxiv.org/pdf/2012.03618v5#page=33) [\(Ref. 2\)](https://arxiv.org/pdf/2211.14645v2#page=10)

5. Ball optimization oracle [\(Ref. 1\),](https://arxiv.org/pdf/2012.03618v5#page=33) [\(Ref. 2\)](https://arxiv.org/pdf/2211.14645v2#page=10)

6. Mapping to Euclidean space (II) [\(Ref.\)](https://arxiv.org/pdf/2211.14645v2#page=31)

Manifold: Locally symmetric space (all applications satisfy this). Actually it works slightly more broadly. For f L-smooth and μ -strongly convex in a ball of center x_0 , and diameter $\approx \min\{\sqrt{\frac{\mu}{L}}, \frac{\mu}{G}\}$, pulling back:

$$
\hat{f}: \mathbb{R}^d \to \mathbb{R}, \quad \hat{f}(\hat{x}) = f(\text{Exp}_{x_0}(\hat{x})),
$$

results in $\Theta(L)$ -smooth, $\Theta(\mu)$ -strongly convex Euclidean function.

This technique is not ours, it is from (CB20), but we use it with the proximal method for an L-smooth function with $\lambda = 1/L$:

$$
\min\left\{f(x)+\frac{L}{2}d(x,x_0)^2\right\}
$$

Condition number: ζ_D . Thus, we just need diameter $D \leq \zeta_D$ if $x^* \in$ the ball. Holds for a $D = O(1)$. This relaxes the required diameter from $O(\sqrt{\mu/L})$ to $O(1).$

7. Showing naturally-ocurring iterate boundedness [\(Ref.\)](https://arxiv.org/pdf/2403.10429v1#page=6)

- 1. Monotonous methods stay in the level set. But this is too bad.
- 2. Subproblems of proximal methods have much smaller level sets.
- 3. Mirror descent approaches can give us natural boundedness.
	- Euclidean step-size: we stay in a bigger ball of diameter $O(R_0\zeta_{R_0})$.
	- Smaller step size by a $\frac{1}{\zeta_{R_0}}$ factor: We stay in a ball of diameter $O(R_0)$.
	- In the hyperbolic space we can do much better. Can this be generalized?

Projected Riemannian Gradient Descent & Prox Subproblems

 $D \stackrel{\text{def}}{=} \text{diam}(\mathfrak{X}), R \stackrel{\text{def}}{=} \text{Lips}(F, \mathfrak{X})/L, \ \lambda \stackrel{\text{def}}{=} 1/L.$

 \blacktriangleright Metric projection. Efficient steps.

$$
x_{t+1} \leftarrow \mathcal{P}_{\mathcal{X}}\left(\text{Exp}_{x_t}\left(-\frac{1}{L+\zeta/\lambda}\nabla F(x_t)\right)\right).
$$

Rates: $\tilde{O}(\zeta_R \zeta_D)$, where $F(x) = f(x) + \frac{1}{2\lambda}d(x,\hat{x})^2$.

Projected Riemannian Gradient Descent & Prox Subproblems

 $D \stackrel{\text{def}}{=} \text{diam}(\mathfrak{X}), R \stackrel{\text{def}}{=} \text{Lips}(F, \mathfrak{X})/L, \ \lambda \stackrel{\text{def}}{=} 1/L.$

 \blacktriangleright Metric projection. Efficient steps.

$$
x_{t+1} \leftarrow \mathcal{P}_{\mathcal{X}}\left(\text{Exp}_{x_t}\left(-\frac{1}{L+\zeta/\lambda}\nabla F(x_t)\right)\right).
$$

Rates: $\tilde{O}(\zeta_R \zeta_D)$, where $F(x) = f(x) + \frac{1}{2\lambda}d(x,\hat{x})^2$.

 \triangleright Quadratic upper model in the tangent space. *i* Efficient steps?

$$
x_{t+1} \leftarrow \text{argmin}_{y \in \mathcal{X}} \{ \langle \nabla F(x_t), \text{Exp}_{x_t}^{-1}(y) \rangle_{x_t} + \frac{L + \zeta/\lambda}{2} d(x_t, y)^2 \}.
$$

Rates: $\widetilde{O}(\zeta_D)$, where $F(x) = f(x) + \frac{1}{2\lambda}d(x,\hat{x})^2$.

Projected Riemannian Gradient Descent & Prox Subproblems

 $D \stackrel{\text{def}}{=} \text{diam}(\mathfrak{X}), R \stackrel{\text{def}}{=} \text{Lips}(F, \mathfrak{X})/L, \ \lambda \stackrel{\text{def}}{=} 1/L.$

 \blacktriangleright Metric projection. Efficient steps.

$$
x_{t+1} \leftarrow \mathfrak{P}_{\mathfrak{X}}\left(\mathsf{Exp}_{x_t}\left(-\frac{1}{L+\zeta/\lambda}\nabla F(x_t)\right)\right).
$$

Rates: $\tilde{O}(\zeta_R \zeta_D)$, where $F(x) = f(x) + \frac{1}{2\lambda}d(x,\hat{x})^2$.

 \triangleright Quadratic upper model in the **tangent space**. *i* Efficient steps?

$$
x_{t+1} \leftarrow \text{argmin}_{y \in \mathcal{X}} \{ \langle \nabla F(x_t), \text{Exp}_{x_t}^{-1}(y) \rangle_{x_t} + \frac{L + \zeta/\lambda}{2} d(x_t, y)^2 \}.
$$

Rates: $\widetilde{O}(\zeta_D)$, where $F(x) = f(x) + \frac{1}{2\lambda}d(x,\hat{x})^2$.

In Composite quadratic upper model in the tangent space. *i* Efficient steps?

$$
x_{t+1} \leftarrow \text{argmin}_{y \in \mathcal{X}} \{ \langle \nabla F(x_t), \text{Exp}_{x_t}^{-1}(y) \rangle_{x_t} + \frac{L}{2} d(x_t, y)^2 + g(y) \}.
$$

Rates: $\widetilde{O}(1)$, where $F(x) = f(x)$ and $g(x) = \frac{1}{2\lambda}d(x,\hat{x})^2$.

Different Results and Trade-Offs in Smooth G-Convex Riem. Optimization

