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Riemannian Optimization

For a Riemannian manifold M:
min
x∈M

f (x).

I Spheres, hyperbolic spaces.
I SPD matrices.
I SO(n) (real orthogonal matrices

with det(A) = 1).
I Stiefel manifold Vk(Rn) (ordered

orthonormal basis of a k-dim vector
space).

I ...
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Riemannian Optimization - Applications

I Principal Components Analysis (Jolliffe et al., 2003; Genicot et al., 2015; Huang and Wei,
2019).

I Low-rank matrix completion (Cambier and Absil, 2016; Heidel and Schulz, 2018; Mishra and
Sepulchre, 2014; Tan et al., 2014; Vandereycken, 2013).

I Dictionary learning (Cherian and Sra, 2017; Sun et al., 2017).
I Optimization under orthogonality constraints (Edelman et al., 1998).

I Some applications to RNNs (Lezcano-Casado and Martínez-Rubio, 2019).
I Robust covariance estimation in Gaussian distributions (Wiesel, 2012).
I Gaussian mixture models (Hosseini and Sra, 2015).
I Operator scaling (Allen-Zhu et al., 2018).
I Wasserstein Barycenters (Hosseini and Sra, 2020).
I Many more...
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Riemannian Optimization

For a Riemannian manifold M:
min
x∈M

f (x).

I Constrained → unconstrained.

I Sometimes: Euclidean non-convex → Riemannian geodesically convex.

Many first-order methods have analogous Riemannian counterparts:
I Deterministic (de Carvalho Bento et al., 2017; Zhang and Sra, 2016).
I Stochastic (Hosseini and Sra, 2017; Khuzani and Li, 2017; Tripuraneni et al., 2018).
I Variance reduced (Sato et al., 2017, 2019; Zhang et al., 2016).
I Adaptive (Kasai et al., 2019).
I Saddle-point escaping (Criscitiello and Boumal, 2019; Sun et al., 2019; Zhang et al., 2018;

Zhou et al., 2019; Criscitiello and Boumal, 2020).
I Projection-free (Weber and Sra, 2017, 2019).
I Accelerated (Zhang and Sra, 2018; Ahn and Sra, 2020; Kim and Yang, 2022).
I Min-max (Zhang et al., 2022; Jordan et al., 2022).
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Geodesic Convexity

Notation: Let M be a Riemannian manifold. Given x , y ∈M and v ∈ TxM we use
〈v , y − x〉 def

= −〈v , x − y〉 def
= 〈v ,Exp−1

x (y)〉x .
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Geodesic Convexity

Notation: Let M be a Riemannian manifold. Given x , y ∈M and v ∈ TxM we use
〈v , y − x〉 def

= −〈v , x − y〉 def
= 〈v ,Exp−1

x (y)〉x .

I µ-strongly geodesic convexity of F : M→ R:

F (y) ≥ F (x) + 〈∇F (x), y − x〉+
µ

2
d(x , y)2, for µ > 0,∀x , y ∈M.

If µ = 0, F is geodesically convex (g-convex).
I L-smoothness:

F (y) ≤ F (x) + 〈∇F (x), y − x〉+
L

2
d(x , y)2, ∀x , y ∈M.

I G -Lipschitzness:
‖∇F (y)‖ ≤ G for all y ∈M.

I A set X is uniquely geodesically convex if there is one and only one geodesic between two points,
and it remains in X.
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Distance squared and cosine inequalities

I Sectional curvature in [Kmin,Kmax]. Assume wlog |Kmin| = 1.
I Φx(y)

def
= 1

2d(x , y)2.
I X ⊂M compact, g-convex set of diameter D.

∇Φx(y) = −Exp−1
y (x) and δ ‖v‖2 ≤ Hess Φx(y)[v , v ] ≤ ζ ‖v‖2 for all x , y ∈ X.

where

ζ
def
= D

√
|Kmin| coth(D

√
|Kmin|) = Θ(D

√
|Kmin|+ 1) if Kmin < 0 else 1.

δ
def
= D

√
Kmax cot(D

√
Kmax) if Kmax > 0 else 1.

Cosine inequalities: Let x , y , z ∈ X. We have:

2〈Exp−1
x (y),Exp−1

x (z)〉 ≤ ζd(x , y)2 + d(x , z)2 − d(y , z)2,

2〈Exp−1
x (y),Exp−1

x (z)〉 ≥ δd(x , y)2 + d(x , z)2 − d(y , z)2.

In neg. curvature: minimum condition number of any L-smooth µ-strongly convex function is ≈ ζD !!
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Bound what’s gotta be bounded!

“Showing that a method converges assuming iterates remain bounded is
compatible with the algorithm diverging.”

A. Matthem Attishen

Ha ha ha!
I proved

convergence!
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Bound what’s gotta be bounded!

“Showing that a method converges assuming iterates remain bounded is
compatible with the algorithm diverging.”

A. Matthem Attishen

Even worse, if you assume your algorithm knows the bound a priori, uses
its value and the iterates depend on it. Circularity!

Let’s do better than that.

Aim of papers in my talk: Show convergence without unreasonable assumptions.

Techniques to guarantee iterates are bounded, to deal with in-manifold constraints, new rates are
discovered, some times very different algorithms, etc.
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You won’t Believe these 7 Techniques to Bound your Riemannian Iterates!

#5 will blow up your mind!
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1. Mapping to Euclidean space (I): Constant curvature solution (Ref.)

We reduce the problem to a non-convex, Euclidean constrained problem.

µ-st. g-convex g-convex tilted-convex

preserves
acceleration
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1. Mapping to Euclidean space (I): Constant curvature solution (Ref.)

We reduce the problem to a non-convex, Euclidean constrained problem.

µ-st. g-convex g-convex tilted-convex

preserves
acceleration

A function f : Rd → R is tilted-convex if ∃ γn, γp ∈ (0, 1] such that:

f (x̃) +
1
γn
〈∇f (x̃), ỹ − x̃〉 ≤ f (ỹ) if 〈∇f (x̃), ỹ − x̃〉 ≤ 0, (grey area)

f (x̃) + γp〈∇f (x̃), ỹ − x̃〉 ≤ f (ỹ) if 〈∇f (x̃), ỹ − x̃〉 ≥ 0.
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2. Metric-Projected Riemannian Gradient Descent (Ref.)

I PRGD works in Hadamard: xt+1 = ΠX(Expxt (−η∇f (xt))).
I Metric projection: ΠX(x)← argminy∈X{d(y , x)} for closed g-convex X.
I Easy to implement if the constraint is a ball.
I Convergence for Lipschitz functions: easy.
I For smooth problems: not so easy.
I We show convergence and pay a ζR factor, where R = G/L (Lipschitzness over smoothness).
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3. Another Projected Riemannian Gradient Descent (Ref.)

I Minimize, in TxtM, the quadratic upper model given by smoothness.

I xt+1 = argminx∈X{f (xt) + 〈∇f (xt),Exp−1
xt (x)〉+ L

2d(x , xt)
2}.

I Works regardless of the curvature.

I Possibly a non-convex problem. Implementable at least in constant curvature.

I Gives better information theoretical upper bound wrt number of gradient oracle queries.

11 17

https://arxiv.org/pdf/2211.14645v2#page=36


4. Proximal point algorithm (Ref.)

1. Known: nonexpansive operator in Hadamard manifolds.

2. We showed: quasi-nonexpansive, i.e., for minimizers x∗ it is d(xt , x
∗) ≤ d(xt−1, x

∗) in the
general Riemannian case.

3. Approximate versions of this algorithm work and are almost quasi-nonexpansive.

4. For L-smooth functions and λ = 1/L we get a condition number of ζR0 in B(x ,R0). Only
depends on the geometry!

xt ← argmin

{
f (x) +

1
λ
d(x , xt−1)2

}

12 17
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5. Ball optimization oracle (Ref. 1), (Ref. 2)

Sequentially optimize with linear rates in a ball of radius O(1).
If done O(ζR0) times, you optimize globally. Initial distance: R0 = d(x0, x

∗).
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6. Mapping to Euclidean space (II) (Ref.)

Manifold: Locally symmetric space (all applications satisfy this). Actually it works slightly more broadly.

For f L-smooth and µ-strongly convex in a ball of center x0, and diameter ≈ min{
√

µ
L ,

µ
G }, pulling

back:

f̂ : Rd → R, f̂ (x̂) = f (Expx0(x̂)),

results in Θ(L)-smooth, Θ(µ)-strongly convex Euclidean function.
This technique is not ours, it is from (CB20), but we use it with the proximal method for an L-smooth
function with λ = 1/L:

min

{
f (x) +

L

2
d(x , x0)2

}

Condition number: ζD . Thus, we just need diameter D ≤ ζD if x∗ ∈ the ball. Holds for a D = O(1).
This relaxes the required diameter from O(

√
µ/L) to O(1).
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7. Showing naturally-ocurring iterate boundedness (Ref.)

1. Monotonous methods stay in the level set. But this is too bad.

2. Subproblems of proximal methods have much smaller level sets.

3. Mirror descent approaches can give us natural boundedness.

I Euclidean step-size: we stay in a bigger ball of diameter O(R0ζR0).

I Smaller step size by a 1
ζR0

factor: We stay in a ball of diameter O(R0).

I In the hyperbolic space we can do much better. Can this be generalized?
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Projected Riemannian Gradient Descent & Prox Subproblems

D
def
= diam(X), R def

= Lips(F ,X)/L, λ def
= 1/L.

I Metric projection. Efficient steps.

xt+1 ← PX

(
Expxt

(
− 1
L + ζ/λ

∇F (xt)

))
.

Rates: Õ(ζRζD), where F (x) = f (x) + 1
2λd(x , x̂)2.

I Quadratic upper model in the tangent space. ¿Efficient steps?

xt+1 ← argminy∈X{〈∇F (xt),Exp−1
xt (y)〉xt +

L + ζ/λ

2
d(xt , y)2}.

Rates: Õ(ζD), where F (x) = f (x) + 1
2λd(x , x̂)2.

I Composite quadratic upper model in the tangent space. ¿Efficient steps?

xt+1 ← argminy∈X{〈∇F (xt),Exp−1
xt (y)〉xt +

L

2
d(xt , y)2 + g(y)}.

Rates: Õ(1), where F (x) = f (x) and g(x) = 1
2λd(x , x̂)2.
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Different Results and Trade-Offs in Smooth G-Convex Riem. Optimization

R
def
= d(x0, x

∗), ζD = Θ(D
√
|Kmin|+ 1) if Kmin < 0 else 1. Kmin

def
= min{sectional curv.}, κ = L/µ.

Result g-convex µ-st. g-cvx K? C/NC? D? Needs R?

0 (Nes05) O(
√

LR2

ε ) Õ(
√
κ) 0 NC O(R) No | No

1 (Mar22) Õ(ζ
3
2

√
ζ + LR2

ε ) Õ(ζ
3
2
√
κ) ctant.6= 0 C O(R) Yes | Yes

2 (CB22) - Ω̃(ζ) ≤ c < 0 - - -

3 (MP23) Õ(ζ2
√
ζ + LR2

ε ) Õ(ζ2√κ) Hadamard∗ C & NC O(R) Yes | No

4 (MRCP23) Õ(ζ
√
ζ + LR2

ε ) Õ(
√
ζκ+ ζ) Hadamard C & NC O(R) Yes | No

5 (CB23) Ω̃(ζ + LR2

ζ
√
ε

) Ω̃(
√
κ+ ζ) ctant < 0 - - -

6 (MRP24).1 O(LR2

ε ) Õ(κ) ctant < 0 NC O(R) No | No
7 (MRP24).2 O(ζ LR2

ε ) Õ(κ) bounded NC O(RζR) No | No
8 (MRP24).3 O(ζ LR2

ε ) Õ(ζκ) bounded NC O(R) Yes | Yes
9 (MRP24).4 O(LR2

ε ) Õ(κ) Hadamard C O(R) Yes | Yes
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