Non-Euclidean High-Order Smooth Convex Optimization

Juan Pablo Contreras*, Cristóbal Guzmán*, David Martínez-Rubio*

Universidad Diego Portales, Universidad Católica de Chile, Zuse Institute Berlin, Carlos III University of Madrid

Collaborators

Juan Pablo Contreras (Universidad Diego Portales)

Cristóbal Guzmán (UC Chile)

1 | 15

Some Problems

▶ Box-simplex games: $\min_{x \in [-1,1]^n} \max_{y \in \Delta^d} x^T Ay - b^T y + c^T x$. (more general than Linear Programs, discrete optimal transport, max flow problems, etc.)

 $ightharpoonup \ell_p$ -regression: $\min_{x \in \mathbb{R}^d} \|Ax - b\|_p$.

Logistic regression (has Lipschitz gradients wrt $\|\cdot\|_{\infty}$): $\min_{x} \sum_{i \in [n]} \log(1 + \exp(-b_i \langle a_i, x \rangle))$, for $a_i \in \mathbb{R}^d$, $b_i \in \{-1, 1\}$.

► Etc.

Black-Box Oracle Optimization

▶ Under some regularity conditions, for convex $f: \mathbb{R}^d \to \mathbb{R}$, we aim to

minimize_x
$$f(x)$$
.

 \blacktriangleright We access f by querying a local oracle at some points: e.g. gradient oracle.

Optimizing f in a class \mathfrak{F} :

- ▶ Design an algorithm \mathcal{A} s.t. $\forall f \in \mathcal{F}$, finds x s.t. $f(x) \min_y f(y) \leq \varepsilon$ with few oracle queries.
- ▶ Show that $\forall A$, $\exists f \in \mathcal{F}$, s.t. A requires that many oracle queries.

High-order smoothness, and beyond

▶ For $f : \mathbb{R}^d \to \mathbb{R}$, an arbitrary norm $\|\cdot\|$, and all $x, y \in \mathbb{R}^d$:

$$\|\nabla^{q} f(x) - \nabla^{q} f(y)\|_{*} \le L \|x - y\|^{\nu}$$
 for some $q \ge 1, \nu \in (0, 1]$.

Implies

$$\|\nabla f(y) - \nabla f_q(x)(y)\|_* \le L \|x - y\|^{q+\nu-1}$$
, for some $q \ge 1, \nu \in (0, 1]$,

where $f_q(y;x)$ is the q-th order Taylor expansion of f at x.

High-order smoothness, and beyond

▶ For $f : \mathbb{R}^d \to \mathbb{R}$, an arbitrary norm $\|\cdot\|$, and all $x, y \in \mathbb{R}^d$:

$$\|\nabla^{q} f(x) - \nabla^{q} f(y)\|_{*} \le L \|x - y\|^{\nu}$$
 for some $q \ge 1, \nu \in (0, 1]$.

Implies

$$\|\nabla f(y) - \nabla f_q(x)(y)\|_* \le L \|x - y\|^{q+\nu-1}$$
, for some $q \ge 1, \nu \in (0, 1]$,

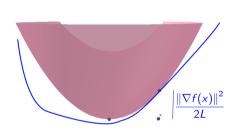
where $f_q(y;x)$ is the q-th order Taylor expansion of f at x.

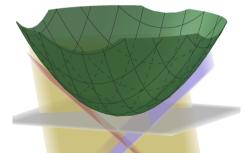
- \blacktriangleright Also in the limit when $q \to \infty$, we have a ball optimization oracle.
- ▶ That is, if we can approximately optimize f locally in unit balls, how fast can we optimize f?

Accelerated Gradient Descent (AGD) Methods

▶ Optimal 1st-order method for minimizing Euclidean convex, *L*-Lipschitz-gradient functions.

Gradient Descent	$O(\frac{LR^2}{\varepsilon})$
Accelerated Gradient Descent	$O(\sqrt{\frac{LR^2}{\varepsilon}})$





AGD is a combination of Gradient Descent and an online learning algorithm with proportional progress and instantaneous regret.

E.g. proportional to $\|\nabla f(x)\|^2$ in the unconstrained case.

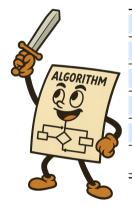
Convergence Results

Initial distance: $R_p \stackrel{\mathrm{def}}{=} \|x_0 - x^*\|_p$; Accuracy: ε ; $m \stackrel{\mathrm{def}}{=} \max\{2, p\}$. $\widetilde{O}_p(\cdot)$: big-O notation up to log factors and constants on p. We use a g-th order or inexact ball oracle, $\nu \in (0, 1]$.

Algorithm	$ ho \in [1,\infty)$	$p=\infty$
Accelerated $(q < \infty)$	$\widetilde{O}_{q+ u,p}\left(\left(rac{\mathit{LR}_p^{q+ u}}{arepsilon} ight)^{rac{m}{(m+1)(q+ u)-m}} ight)$	_
Unaccelerated $(q < \infty)$	$\widetilde{O}_{q+ u}\left(\left(rac{LR_p^{q+ u}}{arepsilon} ight)^{rac{1}{q}} ight)$	
ρ -Ball Oracle $(q = \infty)$	$\widetilde{O}_m\left((R_p/\rho)^{\frac{m}{m+1}}\right)$	$\widetilde{O}(R_{\infty}/ ho)$

Lower Bounds: Smoothing Hard Instances

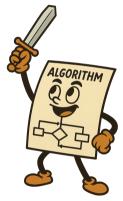
Lipschitz *q*-th order derivatives:



Our Lower Bounds		
Local oracle		
Possibly random algs		
poly(d) parallel queries		
Any norm		
$\left\ \cdot\right\ _p$ -setting: they match up to log factors		

Lower Bounds: Smoothing Hard Instances

Lipschitz *q*-th order derivatives:



Our Algorithms	Our Lower Bounds		
q-th order oracle	Local oracle		
Deterministic	Possibly random algs		
Single-call per round	poly(d) parallel queries		
Any norm	Any norm		
$\left\ \cdot\right\ _{p}$ -setting: they match up to log factors			

Inexact ball oracle: We match the lower bound in (Adil et al. 2025) that used an exact ball oracle.

Before: 1^{st} -order $\|\cdot\|_p$ -LBs : p < 2 & $p \ge 2$ use different proofs. **Ours:** same proof. Solves an open problem on parallel 1^{st} -order convex optimization.

FTRL / Mirror Descent

- ▶ Bregman Divergence: $D_{\psi}(x,y) \stackrel{\text{def}}{=} \psi(x) \psi(y) \langle \nabla \psi(y), x y \rangle$.
- ▶ μ -strongly convexity: $D_{\psi}(x,y) \ge \frac{\mu}{2} \|x-y\|^2$.
- **FTRL algorithm:** Given 1-strongly convex ψ , initial point x_0 , and vectors g_1, \ldots, g_T in a stream,

$$x_t \stackrel{ ext{def}}{=} \operatorname{argmin}_x \left\{ \sum_{i=1}^{t-1} \langle g_i, x
angle + rac{D_{\psi}(x, x_0)}{\eta}
ight\} \ ext{ for some } \eta > 0.$$

Then

$$\sum_{t=1}^T \langle g_t, x_t - u \rangle \leq \frac{D_{\psi}(u, x_0)}{\eta} + \frac{\eta}{2} \sum_{t=1}^T \left\| g_t \right\|_*^2, \text{for all } u.$$

B | 15

FTRL / Mirror Descent

- ▶ Bregman Divergence: $D_{\psi}(x,y) \stackrel{\text{def}}{=} \psi(x) \psi(y) \langle \nabla \psi(y), x y \rangle$.
- μ -strongly convexity: $D_{\psi}(x,y) \geq \frac{\mu}{2} \|x-y\|^2$.
- **FTRL algorithm:** Given 1-strongly convex ψ , initial point x_0 , and vectors g_1, \ldots, g_T in a stream,

$$x_t \stackrel{ ext{def}}{=} \operatorname{argmin}_x \left\{ \sum_{i=1}^{t-1} \langle g_i, x \rangle + rac{D_{\psi}(x, x_0)}{\eta}
ight\} \, \, ext{for some} \, \, \eta > 0.$$

Then

$$\sum_{t=0}^{T} \langle g_t, x_t - u \rangle \leq \frac{D_{\psi}(u, x_0)}{\eta} + \frac{\eta}{2} \sum_{t=0}^{T} \left\| g_t \right\|_*^2, \text{for all } u.$$

If $g_i = \nabla f(x_i)$ for some points x_i , then

$$f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right)-f(x^{*})\leq\frac{1}{T}\sum_{t=1}^{T}f\left(x_{t}\right)-f(x^{*})\leq\frac{1}{T}\sum_{t=1}^{T}\langle\nabla f(x_{t}),x_{t}-x^{*}\rangle.$$

Inexact Uniform Convexity:

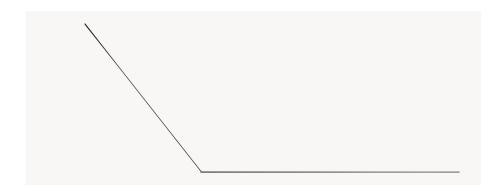
$$D_{\psi}(x,y) \geq \frac{\mu}{s} ||x-y||^s - \delta$$
, for $\delta, s \geq 0$.

Moreau Envelope and Proximal Operator

$$M_{\lambda,f}(x) \stackrel{\text{def}}{=} \min_{y} \left\{ f(y) + \frac{1}{2\lambda} \|y - x\|_{2}^{2} \right\}; \quad \operatorname{prox}_{\lambda,f}(x) \stackrel{\text{def}}{=} \operatorname{argmin}_{y} \left\{ f(y) + \frac{1}{2\lambda} \|y - x\|_{2}^{2} \right\}.$$

By optimality
$$\nabla_y \left(f(y) + \frac{1}{2\lambda} \|y - x\|_2^2 \right) (\operatorname{prox}(x)) = 0$$
, so

$$prox(x) = x - \lambda \nabla f(prox(x))$$
, i.e., implicit Gradient Descent. And minimizers are preserved.

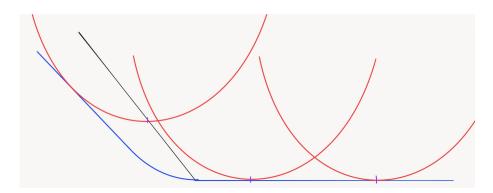


Moreau Envelope and Proximal Operator

$$M_{\lambda,f}(x) \stackrel{\text{def}}{=} \min_{y} \left\{ f(y) + \frac{1}{2\lambda} \left\| y - x \right\|_{2}^{2} \right\}; \quad \operatorname{prox}_{\lambda,f}(x) \stackrel{\text{def}}{=} \operatorname{argmin}_{y} \left\{ f(y) + \frac{1}{2\lambda} \left\| y - x \right\|_{2}^{2} \right\}.$$

By optimality
$$\nabla_y \left(f(y) + \frac{1}{2\lambda} \|y - x\|_2^2 \right) (\operatorname{prox}(x)) = 0$$
, so

 $prox(x) = x - \lambda \nabla f(prox(x))$, i.e., implicit Gradient Descent. And minimizers are preserved.



9 | 1

Let $\|\cdot\|$ be an arbitrary norm. Traditionally people use the non-Euclidean Moreau envelope

$$M_{\psi}(x) \stackrel{\mathrm{def}}{=} \min_{y} \left\{ f(y) + \frac{1}{\lambda} D_{\psi}(y, x) \right\}, \quad \operatorname{prox}_{\lambda}(x) \stackrel{\mathrm{def}}{=} \operatorname{argmin}_{y} \left\{ f(y) + \frac{1}{\lambda} D_{\psi}(y, x) \right\}.$$

for ψ being strongly convex wrt $\|\cdot\|$.

Let $\|\cdot\|$ be an arbitrary norm. We use

$$M(x) \stackrel{\text{def}}{=} \min_{y} \left\{ f(y) + \frac{1}{(q+\nu)\lambda} \left\| y - x \right\|^{q+\nu} \right\}, \quad \operatorname{prox}_{\lambda}(x) \stackrel{\text{def}}{=} \operatorname{argmin}_{y} \left\{ f(y) + \frac{1}{(q+\nu)\lambda} \left\| y - x \right\|^{q+\nu} \right\}.$$

Let $\|\cdot\|$ be an arbitrary norm. We use

$$M(x) \stackrel{\text{def}}{=} \min_{y} \left\{ f(y) + \frac{1}{(q+\nu)\lambda} \left\| y - x \right\|^{q+\nu} \right\}, \quad \operatorname{prox}_{\lambda}(x) \stackrel{\text{def}}{=} \operatorname{argmin}_{y} \left\{ f(y) + \frac{1}{(q+\nu)\lambda} \left\| y - x \right\|^{q+\nu} \right\}.$$

M is **not smooth** in general but satisfies a **descent condition** and **controlled subgradient norm**:

$$M_{\lambda}(x) - M_{\lambda}(\operatorname{prox}_{\lambda}(x)) \ge \frac{1}{(q+\nu)\lambda} \left\| \operatorname{prox}_{\lambda}(x) - x \right\|^{q+\nu},$$

and

$$\left\|g_{\mathsf{x}}\right\|_{*} = rac{1}{\lambda} \left\|\mathsf{prox}(x) - x
ight\|^{q+
u-1} ext{ and } \left\langle g_{\mathsf{x}},\mathsf{prox}(x) - x
ight
angle = rac{1}{\lambda} \left\|\mathsf{prox}(x) - x
ight\|^{q+
u}.$$

Let $\|\cdot\|$ be an arbitrary norm. We use

$$M(x) \stackrel{\text{def}}{=} \min_{y} \left\{ f(y) + \frac{1}{(q+\nu)\lambda} \left\| y - x \right\|^{q+\nu} \right\}, \quad \operatorname{prox}_{\lambda}(x) \stackrel{\text{def}}{=} \operatorname{argmin}_{y} \left\{ f(y) + \frac{1}{(q+\nu)\lambda} \left\| y - x \right\|^{q+\nu} \right\}.$$

M is **not smooth** in general but satisfies a **descent condition** and **controlled subgradient norm**:

$$M_{\lambda}(x) - M_{\lambda}(\operatorname{prox}_{\lambda}(x)) \ge \frac{1}{(q+\nu)\lambda} \left\| \operatorname{prox}_{\lambda}(x) - x \right\|^{q+\nu},$$

and

$$\left\|g_{x}
ight\|_{*}=rac{1}{\lambda}\left\|\operatorname{prox}(x)-x
ight\|^{q+
u-1}$$
 and $\left\langle g_{x},\operatorname{prox}(x)-x
ight
angle =rac{1}{\lambda}\left\|\operatorname{prox}(x)-x
ight\|^{q+
u}$.

Regularized Taylor subproblems: Find a point with low gradient norm of

$$f_{q}(v; x_{k}) + M \|v - x_{k}\|^{q+\nu}$$

for certain M > 0. We show **problems are convex** if $x \mapsto ||x||^2$ is strongly convex wrt itself. E.g. *p*-norms, for $p \in (1,2]$.

Lower Bound Techniques: Hard functions

▶ The simplest hard function for the Euclidean Lipschitz convex class for $x_0 = 0$:

$$x\mapsto \max_{i\in[d]}\left\{x_i-rac{i}{d}
ight\} \ ext{for } x\in B(0,1).$$

- ▶ If we have a point $x = (x_1, ..., x_k, 0, ..., 0)$ we only observe k of the linear functions!
- ▶ We need to observe them all to find the minimizer. We need many to approximate it.

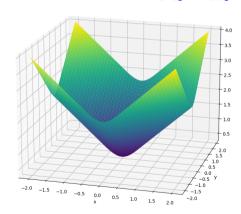
Lower Bound Techniques: Randomized Smoothing

▶ Smoothing of an f that is G-Lipschitz wrt $\|\cdot\|$:

$$S_{\beta}[f](x) \stackrel{\text{def}}{=} \mathbb{E}_{\mathbf{v} \sim \nu_{B_{\parallel,\parallel}(\mathbf{0},\beta)}}[f(x+v)]$$

- ► $S_{\beta}[f](x)$ is also *G*-Lipschitz and its gradient is $\frac{dG}{\beta}$ -Lipschitz wrt $\|\cdot\|$.
- $|S_{\beta}[f](x) f(x)| \leq \beta G.$
- ▶ Since $S_{\beta}[f](x)$ depends on f locally it will preserve local hardness.

Figure: A smoothing of $x \mapsto ||x||_1$ wrt $||\cdot||_1$



Lower Bound Techniques: Softmax and our Final Hard Function

- ▶ Let $A(x) = (\langle a^{(1)}, x \rangle, \dots, \langle a^{(d)}, x \rangle)$, with $\|a^{(i)}\|_* \le 1$.
- ▶ Define the softmax function as $\operatorname{smax}_{\mu}(x) \stackrel{\text{def}}{=} \mu \ln \left(\sum_{j=1}^{d} \exp(x_i/\mu) \right)$.

Lower Bound Techniques: Softmax and our Final Hard Function

- ▶ Let $A(x) = (\langle a^{(1)}, x \rangle, \dots, \langle a^{(d)}, x \rangle)$, with $||a^{(i)}||_* \le 1$.
- ▶ Define the softmax function as $\operatorname{smax}_{\mu}(x) \stackrel{\text{def}}{=} \mu \ln \left(\sum_{j=1}^{d} \exp(x_i/\mu) \right)$.
- ▶ $\operatorname{smax}_{\mu}(Ax)$ is 1-Lipschitz wrt $\|\cdot\|$.
- $ightharpoonup
 abla^q \operatorname{smax}_{\mu} \text{ is } \widetilde{O}_q(\frac{1}{\mu^q})\text{-Lipschitz wrt } \|\cdot\|.$

Lower Bound Techniques: Softmax and our Final Hard Function

Let
$$A(x) = (\langle a^{(1)}, x \rangle, \dots, \langle a^{(d)}, x \rangle)$$
, with $\|a^{(i)}\|_* \leq 1$.

- ▶ Define the softmax function as $\operatorname{smax}_{\mu}(x) \stackrel{\text{def}}{=} \mu \ln \left(\sum_{j=1}^{d} \exp(x_i/\mu) \right)$.
- $ightharpoonup \text{smax}_{\mu}(Ax)$ is 1-Lipschitz wrt $\|\cdot\|$.
- $ightharpoonup
 abla^q \operatorname{smax}_{\mu} \text{ is } \widetilde{O}_q(\frac{1}{\mu^q})\text{-Lipschitz wrt } \|\cdot\|.$
- ▶ $f_i \equiv \text{softmax of } (Ax)_1 \gamma, \dots, (Ax)_i i\gamma$, for some $\gamma > 0$, up to some shifts.
- ▶ Hard function $g(x) = (S_{\beta/2^q} \circ S_{\beta/2^{q-1}} \circ \cdots \circ S_{\beta/2})(h)$.

▶ Goal: $\min_{x} \|Ax - b\|_{\infty}$ up to ε .

- ▶ Goal: $\min_{x} \|Ax b\|_{\infty}$ up to ε .
- ▶ Approximate it by $c \log \left(\sum_{i \in [d]} \exp(\frac{1}{c} (Ax)_i) \right)$ for $c = \frac{\varepsilon}{2 \log(d)}$.

- ▶ Goal: $\min_{x} \|Ax b\|_{\infty}$ up to ε .
- ▶ Approximate it by $c \log \left(\sum_{i \in [d]} \exp(\frac{1}{c} (Ax)_i) \right)$ for $c = \frac{\varepsilon}{2 \log(d)}$.
- ▶ It is $\frac{\varepsilon}{2}$ away. Solve for $\frac{\varepsilon}{2}$ accuracy.

- ▶ Goal: $\min_{x} \|Ax b\|_{\infty}$ up to ε .
- ▶ Approximate it by $c \log \left(\sum_{i \in [d]} \exp(\frac{1}{c} (Ax)_i) \right)$ for $c = \frac{\varepsilon}{2 \log(d)}$.
- ▶ It is $\frac{\varepsilon}{2}$ away. Solve for $\frac{\varepsilon}{2}$ accuracy.
- ► The Hessian is locally multiplicative stable: $\gamma^{-1}\nabla^2 f(y) \leq \nabla^2 f(x) \leq \gamma \nabla^2 f(y)$, for $\gamma = O(1)$, $\forall y \in B_{\|\cdot\|_{\infty}}(x, \widetilde{O}(\varepsilon))$.

- ▶ Goal: $\min_{x} ||Ax b||_{\infty}$ up to ε .
- ▶ Approximate it by $c \log \left(\sum_{i \in [d]} \exp(\frac{1}{c} (Ax)_i) \right)$ for $c = \frac{\varepsilon}{2 \log(d)}$.
- ▶ It is $\frac{\varepsilon}{2}$ away. Solve for $\frac{\varepsilon}{2}$ accuracy.
- ► The Hessian is locally multiplicative stable: $\gamma^{-1}\nabla^2 f(y) \leq \nabla^2 f(x) \leq \gamma \nabla^2 f(y)$, for $\gamma = O(1)$, $\forall y \in B_{\|\cdot\|_{\infty}}(x, \widetilde{O}(\varepsilon))$.
- ▶ One Hessian and $\widetilde{O}(1)$ gradients are enough to implement an ℓ_{∞} -ball optimization oracle of radius $\widetilde{O}(\varepsilon)$.

Thanks!

Questions?

