On the Necessity of Adaptive Regularisation: Optimal Anytime Online Learning on ℓ_p -Balls

NeurIPS 2025

Emmeran Johnson (Imperial College London) David Martínez-Rubio (Carlos III University of Madrid) Ciara Pike-Burke (Imperial College London) Patrick Rebeschini (University of Oxford)

NeurIPS 2025 1/

Online Convex Optimisation (OCO)

- A sequential game over T rounds where in each round t = 1, ..., T:
 - A learner picks a point x_t in a convex set $V \subset \mathbb{R}^d$.
 - An adversary chooses a convex loss function $\ell_t: V \to [-1,1]$, it is revealed to the learner who suffers a loss of $\ell_t(x_t)$.
- The goal is to minimize cumulative regret:

$$R_T = \sum_{t=1}^{T} \ell_t(x_t) - \inf_{u \in V} \sum_{t=1}^{T} \ell_t(u).$$

NeurIPS 2025 2 / 7

OCO on ℓ_p -balls

- $V = \mathcal{B}_p = \{x \in \mathbb{R}^d : ||x||_p \le 1\}, p > 2.$
- Follow The Regularised Leader (FTRL) algorithm:

$$x_{t+1} = \underset{x \in V}{\operatorname{arg min}} \{ \psi(x) + \eta_t \sum_{s=1}^t \ell_s(x) \}.$$

- $\psi(x) = \frac{1}{2} ||x||_2^2 \implies R_T = O(\sqrt{Td^{1-2/p}}).$
 - Optimal for $d \leq T$ (low-dimensional setting).
- $\psi(x) = \frac{1}{p} ||x||_p^p \implies R_T = O(T^{1-1/p}).$
 - Optimal for d > T (high-dimensional setting).

NeurIPS 2025 3 / 7

Optimal Regret with Adaptive Regularisation

- If T is unknown, how to choose ψ ?
- FTRL using $\frac{1}{p}||x||_p^p$ until $t_0 \approx d$ and then switching to $\frac{1}{2}||x||_2^2$ guarantees anytime optimality.
- Anytime optimal = optimal without knowledge of T.
- Adaptive Regularisation = switching regulariser.

NeurIPS 2025 4/

Necessity of Adaptive Regularisation

• FTRL with $\frac{1}{2}||x||_2^2$ and any decreasing step-size η_t suffers

$$R_T = \Omega\left(\min\left(T, \sqrt{Td^{1-2/p}}\right)\right).$$

• FTRL with $\frac{1}{p}||x||_p^p$ and any decreasing step-size η_t suffers

$$R_T = \Omega(T^{1-1/p}).$$

• Main result (separable regularisers): consider $\psi(x) = \sum_{i=1}^{d} g(x_i)$, where g is a 1-dimensional regulariser. FTRL with ψ and any sequence of decreasing η_t cannot be optimal across all dimensions.

NeurIPS 2025 5 /

Linear Bandit Setting

- Bandit setting: learner only observes $\ell_t(x_t)$, not ℓ_t .
- High-dimensional linear bandit problem is not learnable:

Fix $p \geq 1$. For d large enough and any OCO algorithm with bandit feedback on $V = \mathcal{B}_p$, there exists a sequence of random linear losses such that $\mathbb{E}[\bar{R}_T] = \Omega(T)$.

NeurIPS 2025 6 / 7

Conclusion

Thank you!

NeurIPS 2025 7 / 7